Manual

AUTOMATION

WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 750-881

10/100 Mbit/s; digital and analog Signals

© 2012 by WAGO Kontakttechnik GmbH & Co. KG All rights reserved.

WAGO Kontakttechnik GmbH & Co. KG

Hansastraße 27 D-32423 Minden

Phone: +49 (0) 571/8 87 - 0 Fax: +49 (0) 571/8 87 - 1 69

E-Mail: info@wago.com

Web: <u>http://www.wago.com</u>

Technical Support

Phone:	+49 (0) 571/8 87 - 5 55
Fax:	+49 (0) 571/8 87 - 85 55

E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the accuracy and completeness of this documentation. However, as errors can never be fully excluded, we always appreciate any information or suggestions for improving the documentation.

E-Mail: documentation@wago.com

We wish to point out that the software and hardware terms as well as the trademarks of companies used and/or mentioned in the present manual are generally protected by trademark or patent.

Table of Contents

1 N	otes about this Documentation	. 12
1.1	Validity of this Documentation	. 12
1.2	Copyright	. 12
1.3	Symbols	. 13
1.4	Number Notation	. 15
1.5	Font Conventions	. 15
2 Ir	nportant Notes	. 16
2.1	Legal Bases	. 16
2.1.1	Subject to Changes	. 16
2.1.2	Personnel Qualifications	. 16
2.1.3	Use of the 750 Series in Compliance with Underlying Provisions	. 16
2.1.4	Technical Condition of Specified Devices	. 17
2.2	Safety Advice (Precautions)	. 18
2.3	Special Use Conditions for ETHERNET Devices	. 20
3 S	ystem Description	21
3.1	Manufacturing Number	. 22
3.2	Hardware Address (MAC ID)	. 22
3.3	Component Update	. 23
3.4	Storage, Assembly and Transport	. 23
3.5	Assembly Guidelines/Standards	. 23
3.6	Power Supply	. 24
3.6.1	Isolation	. 24
3.6.2	System Supply	. 25
3.6.2.1	Connection	. 25
3.6.2.2	Dimensioning	. 26
3.6.3	Field Supply	. 29
3.6.3.1	Connection	. 29
3.6.3.2	Fusing	. 30
3.6.4	Supplementary Power Supply Regulations	. 34
3.6.5	Supply Example	. 35
3.6.6	Power Supply Unit	. 37
3.7	Grounding	. 38
3.7.1	Grounding the DIN Rail	. 38
3.7.1.1	Framework Assembly	. 38
3.7.1.2	Insulated Assembly	. 38
3.7.2	Grounding Function	. 39
3.7.3	Grounding Protection	. 40
3.8	Shielding	41
3.8.1	General	41
3.8.2	Bus cables	. 41
3.8.3	Signal lines	. 41
3.8.4	WAGO Shield Connecting System	. 42

4.1View44.2Connectors44.2.1Device Supply44.2.2Fieldbus Connection44.3Display Elements54.4Operating Elements54.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	46 48 49 50 51 51 52 54 55 55
4.2Connectors	48 48 49 50 51 51 52 54 55 55
4.2.1Device Supply44.2.2Fieldbus Connection44.3Display Elements54.4Operating Elements54.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	48 49 50 51 51 52 54 55 55
4.2.2Fieldbus Connection44.3Display Elements54.4Operating Elements54.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	 49 50 51 51 52 54 55 55
4.3Display Elements54.4Operating Elements54.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	50 51 51 52 54 55 55
4.4Operating Elements54.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	51 51 52 54 55 55
4.4.1Service Interface54.4.2Mode Selector Switch54.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	51 52 54 55 55
4.4.2Mode Selector Switch	52 54 55 55
4.4.3Address Selection Switch54.5Technical Data54.5.1Device Data5	54 55 55
4.5Technical Data54.5.1Device Data5	55 55
4.5.1 Device Data	55
4.5.2 System Data	55
4.5.3 Supply	56
4.5.4 Fieldbus MODBUS/TCP	56
4.5.5 Accessories	56
4.5.6 Wire Connection	56
4.5.7 Climatic environmental conditions	57
4.5.8 Mechanical strength	57
4.6 Approvals 5	58
4.7 Standards and Guidelines	59
5 Assembly	50
5.1 Installation Position	50
5.2 Total Extension	50
5.3 Assembly onto Carrier Rail	52
5.3.1 Carrier Rail Properties	52
5.3.2 WAGO DIN Rail	53
5.4 Spacing	53
5.5 Assembly Sequence	54
5.6 Inserting and Removing Devices	55
5.6.1 Inserting the Fieldbus Coupler/Controller	56
5.6.2 Removing the Fieldbus Coupler/Controller	56
5.6.3 Inserting I/O Module	57
5.6.4 Removing the I/O Module	58
6 Connect Devices	59
6.1 Data Contacts/Internal Bus	59
6.2 Power Contacts/Field Supply	70
6.3 Connecting a conductor to the CAGE CLAMP [®] 7	71
7 Function Description7	72
7.1 Operating System	72
7.1.1 Run-up	72
7.1.2 PFC Cycle	72
7.2 Process Data Architecture	74
7.2.1 Basic Structure	74
7.2.2 Example of an Input Process Image	76
7.2.3 Example of an Output Data Process Image7	77
7.2.4 Process Data MODBUS/TCP and EtherNet/IP7	78
7.3 Data Exchange 7	79

7.3.1	Memory Areas	. 81
7.3.2	Addressing	. 84
7.3.2.1	Addressing of I/O Modules	. 85
7.3.2.2	Address Ranges	. 86
7.3.2.3	Absolute Addressing	. 89
7.3.3	Data Exchange between MODBUS/TCP Master and I/O Modules	. 91
7.3.3.1	Data Exchange between EtherNet/IP Master and I/O Modules	. 93
7.3.4	Data Exchange between PLC Function (CPU) and I/O Modules	. 94
7.3.5	Data Exchange between Master and PLC Function (CPU)	. 95
7.3.5.1	Example of MODBUS/TCP Master and PLC Function (CPU)	. 95
7.3.6	Application Example	. 97
8 C	ommissioning	. 98
8.1	Connecting Client PC and Fieldbus Nodes	. 99
8.2	Allocating the IP Address to the Fieldbus Node	. 99
8.2.1	Assigning IP Address via Address Selection Switch	100
8.2.2	Assigning IP Address via DHCP	102
8.2.2.1	Enable DHCP	102
8.2.2.2	Disabling DHCP	103
8.2.3	Assigning the IP Address with a BootP Server	105
8.2.3.1	Note MAC ID	106
8.2.3.2	Determining IP addresses	107
8.2.3.3	Assigning the IP address and Enable BootP	108
8.2.3.4	Disabling BootP	108
8.2.3.5	Reasons for Failed IP Address Assignment	111
8.3	Testing the Function of the Fieldbus Node	112
8.4	Preparing the Flash File System	113
8.5	Synchronizing the Real-Time Clock	115
8.6	Restoring Factory Settings	118
9 Pi	rogramming the PFC using WAGO-I/O-PRO	119
9.1	Configuration using the WAGO-I/O-PRO I/O Configurator	121
9.1.1	Configuration using the "EA-config.xml" File	124
9.2	ETHERNET Libraries for WAGO-I/O- <i>PRO</i>	126
9.3	Functional Restrictions and Limits	128
9.4	General Information about IEC Tasks	131
9.4.1	IEC Task Sequence.	133
9.4.2	Overview of Most Important Task Priorities	133
9.5 0.5 1	System Events	133
9.5.1	Enabling/disabiling system events	122
9.0	Transfer the FEC program to the controller	13/
9.0.1	Transfer via Fieldbus and FTHFRNFT	120
10 0	Transfer via Fieldous and Efficient Sectors (WDM)	1 4 2
10 C	onliguring via the web-Based Management System (WBM)	145
10.1	Information	144
10.2		140
10.3	I U I / II	149 151
10.4	r uit SNIMD	151
10.5	SIMUTI	157
10.3.1	$\bigcup 1 \forall 1 \forall 1 / \forall 2 \cup \dots$	1.74

10.5.2	SNMP V3	156
10.6	Watchdog	158
10.7	Clock	160
10.8	Security	162
10.9	PLC Info	165
10.10	PLC	166
10.11	Features	169
10.12	I/O Config	170
10.13	WebVisu	172
11 Di	agnostics	174
11.1	LED Signaling	174
11.1.1	Evaluating Fieldbus Status	174
11.1.2	Evaluating Node Status - I/O LED (Blink Code Table)	176
11.1.2.1	USR LED	184
11.1.3	Evaluating Power Supply Status	184
11.2	Fault Behavior	185
11.2.1	Loss of Fieldbus	185
11.2.2	Internal Data Bus Failure	187
12 Fi	eldbus Communication	188
12.1	Implemented Protocols	188
12.1.1	Communication Protocols	188
12.1.1.1	IP (Internet Protocol)	188
12.1.1.2	TCP (Transmission Control Protocol)	193
12.1.1.3	UDP (User Datagram Protocol)	193
12.1.2	Configuration and Diagnostics Protocols	194
12.1.2.1	BootP (Bootstrap Protocol)	194
12.1.2.2	DHCP (Dynamic Host Configuration Protocol)	196
12.1.2.3	HTTP (Hypertext Transfer Protocol)	198
12.1.2.4	DNS (Domain Name Systems)	199
12.1.2.5	SNTP-Client (Simple Network Time Protocol)	199
12.1.2.6	FTP-Server (File Transfer Protocol)	199
12.1.2.7	SNMP (Simple Network Management Protocol)	200
12.1.2.7	.1 MIB II Description	201
12.1.2.7	.2 Traps	202
12.1.3	Application Protocols	203
12.2	MODBUS Functions	204
12.2.1	General	204
12.2.2	Use of the MODBUS Functions	207
12.2.3	Description of the MODBUS Functions	
12.2.3.1	Function Code FC1 (Read Coils)	209
12.2.3.2	Function Code FC2 (Read Input Discretes)	211
12.2.3.3	Function Code FC3 (Read Multiple Registers)	213
12.2.3.4	Function Code FC4 (Read Input Registers)	
12.2.3.5	Function Code FC5 (Write Coil)	215
12.2.3.6	Function Code FC6 (Write Single Register)	
12.2.3.7	Function Code FC11 (Get Comm Event Counter)	
12.2.3.8	Function Code FC15 (Force Multiple Coils)	
12.2.3.9	Function Code FC16 (Write Multiple Registers)	
12.2.3.1	0 Function Code FC22 (Mask Write Register)	221

10 0 0 1 1		
12.2.3.11	Function Code FC23 (Read/Write Multiple Registers)	222
12.2.4	MODBUS Register Mapping	224
12.2.5	MODBUS Registers	227
12.2.5.1	Accessing Register values	228
12.2.5.2	Watchdog Registers	228
12.2.5.3	Diagnostic Registers	234
12.2.5.4	Configuration Registers	235
12.2.5.5	Firmware Information Registers	240
12.2.5.6	Constant Registers	242
12.3 E	therNet/IP (Ethernet/Industrial Protocol)	244
12.3.1	General	244
12.3.2	Protocol overview in the OSI model	245
12.3.3	Characteristics of the EtherNet/IP Protocol Software	246
12.3.4	EDS File	246
12.3.5	Object Model	247
12.3.5.1	General	247
12.3.5.2	Class Overview	248
12.3.5.3	Explanation of the Table Headings in the Object Descriptions.	250
12.3.5.4	Identity (01 hex)	250
12.3.5.5	Message Router (02 hex)	252
12.3.5.6	Assembly Object (04 hex)	253
12.3.5.7	Connection (05 hex)	257
12.3.5.8	Connection Manager (06 hex)	257
12.3.5.9	Port Class (F4 hex)	258
12.3.5.10	TCP/IP Interface (F5 hex)	260
12.3.5.11	Ethernet Link (F6 hex)	261
12.3.5.12	Coupler/Controller Configuration (64 hex)	267
12.3.5.13	Discrete Input Point (65 hex)	270
12.3.5.14	Discrete Input Point Extended 1 (69 hex)	270
12.3.5.15	Discrete Input Point Extended 2 (6D hex)	271
12.3.5.16	Discrete Input Point Extended 3 (71 hex)	272
12.3.5.17	Discrete Output Point (66 hex)	272
12.3.5.18	Discrete Output Point Extended 1 (6A hex)	273
12.3.5.19	Discrete Output Point Extended 2 (6E hex)	274
12.3.5.20	Discrete Output Point Extended 3 (72 hex)	274
12.3.5.21	Analog Input Point (67 hex)	275
12.3.5.22	Analog Input Point Extended 1 (6B hex)	276
12.3.5.23	Analog Input Point Extended 2 (6F hex)	276
12.3.5.24	Analog Input Point Extended 3 (73 hex)	277
12.3.5.25	Analog Output Point (68 hex)	278
12.3.5.26	Analog Output Point Extended 1 (6C hex)	278
12.3.5.27	Analog Output Point Extended 2 (70 hex)	279
12.3.5.28	Analog Output Point Extended 3 (74 hex)	280
12.3.5.29	Module Configuration (80 hex)	281
12.3.5.30	Module Configuration Extended (81 hex)	281
12.3.5.31	Input Fieldbus Variable USINT (A0 hex)	283
12.3.5.32	Input Fieldbus Variable USINT Extended 1 (A1 hex)	284
12.3.5.33	Input Fieldbus Variable USINT Extended 2 (A2 her)	285
12.3.5.34	Output Fieldbus Variable USINT (A3 hav)	286
12.3.5.35	Output Fieldbus Variable USINT Extended 1 (A4 hex)	287

12.3.5.36 12.3.5.37 12.3.5.38 12.3.5.39 12.3.5.40	Output Fieldbus Variable USINT Extended 2 (A5 hex) Input Fieldbus Variable UINT (A6 hex) Input Fieldbus Variable UINT Extended 1 (A7 hex) Output Fieldbus Variable UINT (A8 hex) Output Fieldbus Variable UINT Extended 1 (A9 hex)	. 288 . 289 . 290 . 291 . 292
12.3.5.41 12.3.5.42 12.3.5.43	Input Fieldbus Variable UDINT (AA hex) Input Fieldbus Variable UDINT Offset (AB hex) Output Fieldbus Variable UDINT (AC hex)	. 293 . 294 . 295
12.3.5.44	Output Fieldbus Variable UDINT Offset (AD hex)	. 296
13 I/O I	Modules	. 297
13.1 O	verview	. 297
13.2 Pr	ocess Data Architecture for MODBUS/TCP	. 298
13.2.1	Digital Input Modules	. 299
13.2.1.1	Channel Digital Input Module with Diagnostics	. 299
13.2.1.2	2 Channel Digital Input Modules	. 299
13.2.1.3	2 Channel Digital Input Module with Diagnostics	. 299
13.2.1.4	2 Channel Digital Input Module with Diagnostics and Output Process Data	300
13215	4 Channel Digital Input Modules	300
13.2.1.5	8 Channel Digital Input Modules	300
13.2.1.0	16 Channel Digital Input Modules	301
13.2.1.7	Digital Output Modules	302
13.2.2	1 Channel Digital Output Module with Input Process Data	302
13222	2 Channel Digital Output Modules	302
13.2.2.3	2 Channel Digital Input Modules with Diagnostics and Input	
	Process Data	. 303
13.2.2.4	4 Channel Digital Output Modules	. 304
13.2.2.5	4 Channel Digital Output Modules with Diagnostics and Input Process Data	304
13.2.2.6	8 Channel Digital Output Module	. 304
13.2.2.7	8 Channel Digital Output Modules with Diagnostics and Input	
	Process Data	. 305
13.2.2.8	16 Channel Digital Output Modules	. 305
13.2.2.9	8 Channel Digital Input/Output Modules	. 306
13.2.3	Analog Input Modules	. 307
13.2.3.1	1 Channel Analog Input Modules	. 307
13.2.3.2	2 Channel Analog Input Modules	. 307
13.2.3.3	4 Channel Analog Input Modules	. 308
13.2.4	Analog Output Modules	. 309
13.2.4.1	2 Channel Analog Output Modules	. 309
13.2.4.2	4 Channel Analog Output Modules	. 309
13.2.5	Specialty Modules	. 310
13.2.5.1	Counter Modules	. 310
13.2.5.2	Puise Width Modules	. 312
15.2.5.5	Serial Interface Modules with alternative Data Format	. 512
13.2.3.4	Deta Evaluarea Madula	. 313
13.2.3.3	Data Exchange Woulde	212
13.2.3.0	Jose Franklinger Interface Modules	. 515 317
13758	DC-Drive Controller	316
10.2.0.0		

13.2.5.9	Stepper Controller	. 317
13.2.5.10	RTC Module	. 318
13.2.5.11	DALI/DSI Master Module	. 318
13.2.5.12	EnOcean Radio Receiver	. 319
13.2.5.13	MP Bus Master Module	. 319
13.2.5.14	Bluetooth [®] RF-Transceiver	. 320
13.2.5.15	Vibration Velocity/Bearing Condition Monitoring VIB I/O	. 321
13.2.5.16	KNX/EIB/TP1 Module	. 321
13.2.5.17	AS-interface Master Module	. 322
13.2.6	System Modules	. 324
13.2.6.1	System Modules with Diagnostics	. 324
13.2.6.2	Binary Space Module	. 324
13.3 Pr	ocess Data Architecture for EtherNet/IP	. 324
13.3.1	Digital Input Modules	. 326
13.3.1.1	1 Channel Digital Input Module with Diagnostics	. 326
13.3.1.2	2 Channel Digital Input Modules	. 326
13.3.1.3	2 Channel Digital Input Module with Diagnostics	. 327
13.3.1.4	2 Channel Digital Input Module with Diagnostics and Output	
	Process Data.	. 327
13.3.1.5	4 Channel Digital Input Modules	. 328
13.3.1.6	8 Channel Digital Input Modules	. 328
13.3.1.7	16 Channel Digital Input Modules	. 328
13.3.2	Digital Output Modules	. 329
13.3.2.1	1 Channel Digital Output Module with Input Process Data	. 329
13.3.2.2	2 Channel Digital Output Modules	330
13 3 2 3	2 Channel Digital Input Modules with Diagnostics and Input	
10.00.2.00	Process Data	. 330
13.3.2.4	4 Channel Digital Output Modules	. 331
13.3.2.5	4 Channel Digital Output Modules with Diagnostics and Input	
	Process Data	331
13326	8 Channel Digital Output Module	332
13 3 2 7	8 Channel Digital Output Modules with Diagnostics and Input	
13.3.2.7	Process Data	332
13328	16 Channel Digital Output Modules	333
13 3 2 9	8 Channel Digital Input/Output Modules	333
13 3 3	Analog Input Modules	334
13 3 3 1	1 Channel Analog Input Modules	334
13 3 3 2	2 Channel Analog Input Modules	335
13 3 3 3	4 Channel Analog Input Modules	335
13.3.4	Analog Output Modules	336
13.3.4	2 Channel Analog Output Modules	336
13.3.4.1	4 Channel Analog Output Modules	226
13.3.4.2	Specialty Modules	227
13.3.5	Counter Modules	227
13.3.3.1	Pulso Width Modulos	220
12252	Sorial Interface Modules with alternative Data Format	220
13.3.3.3	Serial Interface Modules with Standard Data Format	210
13.3.3.4	Deta Evaluarea Madula	. 340
13.3.3.3	Data Exchange Wodule	. 341
13.3.3.0	551 I ransmitter interface Modules	. 341
13.3.5.7	Incremental Encoder Interface Modules	. 342

13.3.5.8	DC-Drive Controller	344
13.3.5.9	Steppercontroller	345
13.3.5.1	0 RTC Module	346
13.3.5.1	1 DALI/DSI Master Module	347
13.3.5.1	2 EnOcean Radio Receiver	347
13.3.5.1	3 MP Bus Master Module	348
13.3.5.1	4 Bluetooth [®] RF-Transceiver	348
13.3.5.1	5 Vibration Velocity/Bearing Condition Monitoring VIB I/O	349
13.3.5.1	6 AS-interface Master Module	350
13.3.6	System Modules	351
13.3.6.1	System Modules with Diagnostics	351
13.3.6.2	Binary Space Module	351
14 A	oplication Examples	352
14.1	Test of MODBUS protocol and fieldbus nodes	352
14.2	Visualization and Control using SCADA Software	352
15 U	e in Hazardous Environments	355
15 0	Marking Configuration Examples	256
15.1	Marking Configuration Examples	550
13.1.1 15.1.2	Marking for A marian apparding to VENELEC and IEC	550
15.1.2	Installation Descriptions	339
15.2	Special Conditions for Safe Operation of the ATEX and IEC Ex.	300
13.2.1	DEMICO 08 A TEX 142851 V and IECEV DTD 07 0064)	acc.
1522	Special conditions for sofe use (ATEX Cortificate TÜV 07 ATEX	301
13.2.2	Special conditions for sale use (ATEX Certificate TOV 07 ATEZ	367
		1117
1522	Spacial conditions for safe use (IEC Ex Cartificate TIN 00 0001	
15.2.3 15.2.4	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12 12 01	X)364 366
15.2.3 15.2.4	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01	X)364 366 368
15.2.3 15.2.4 16 Ay	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01	X)364 366 368
15.2.3 15.2.4 16 A 16.1	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01	X)364 366 368 368
15.2.3 15.2.4 16 A 16.1 16.1.1	Solutions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group	X)364 366 368 368 368
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group	X)364 366 368 368 368 369 369
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16 1 4	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group	X)364 366 368 368 368 369 371 272
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group IP Group	X)364 366 368 368 368 369 371 372
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6	Solutions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group ICMP Group TCP Group	X)364 366 368 368 368 369 371 372 373
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7	Source So	X)364 366 368 368 368 369 371 372 373 374
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8	Source So	X)364 366 368 368 368 369 371 372 373 374 375 376
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2	Solutions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group ICMP Group TCP Group UDP Group SNMP Group	X)364 366 368 368 368 369 371 372 373 374 375 376 377
15.2.3 15.2.4 16 Ay 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2	Source So	X)364 366 368 368 368 369 371 372 373 374 375 376 377
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.1	Source So	X)364 366 368 368 368 369 371 372 373 374 375 376 377 377 377
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3	Source of the second se	X)364 366 368 368 368 369 371 372 373 374 375 376 377 377 377 377
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4	Source System Source System Source System Group System Gr	X)364 X)364 366 368 368 369 371 372 373 374 375 377 377 377 377 378 379
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5	SJ4080 A) Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IPRoute Table Group ICMP Group TCP Group UDP Group SNMP Group SNMP Group VAGO MIB Groups Company Group Product Group Versions Group Real-Time Clock Group Ethernet Group	X)364 X)364 366 368 368 368 369 371 372 373 374 375 376 377 377 377 378 379 380
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6	SJ4080 X) Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 pendix MIB II Groups System Group Interface Group IP Group IP Group ICMP Group TCP Group UDP Group SNMP Group SNMP Group Company Group Product Group Versions Group Real-Time Clock Group Ethernet Group	X)364 366 368 368 368 368 369 371 372 373 374 375 376 377 377 377 378 379 380 380
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group ICMP Group TCP Group UDP Group SNMP Group SNMP Group Company Group Product Group Versions Group Real-Time Clock Group Ethernet Group PLC Project Group	X)364 X)364 366 368 368 369 371 372 373 374 375 376 377 377 377 377 378 379 380 380 381
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group ICMP Group TCP Group UDP Group SNMP Group SNMP Group VaGO MIB Groups Company Group Product Group Versions Group Real-Time Clock Group Ethernet Group Actual Error Group PLC Project Group	X)364 X)364 366 368 368 368 369 371 372 373 374 375 376 377 377 377 378 379 380 381 382
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8 16.2.9	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 MIB II Groups System Group Interface Group IP Group IP Group IP Group ICMP Group UDP Group SNMP Group SNMP Group VaGO MIB Groups Company Group Product Group Versions Group Real-Time Clock Group Ethernet Group Actual Error Group PLC Project Group	X)364 X)364 366 368 368 368 369 371 372 373 374 375 377 377 377 377 377 378 379 380 381 382 382
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8 16.2.9 16.2.10	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 Dependix	X)364 X)364 366 368 368 368 369 371 372 373 374 375 376 377 377 377 377 377 377 377 378 380 381 382 382 382 382
15.2.3 15.2.4 16 A 16.1 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 16.1.6 16.1.7 16.1.8 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8 16.2.9 16.2.10 16.2.11	Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 ANSI/ISA 12.12.01 Deendix	X)364 X)364 366 368 368 368 368 369 371 372 373 374 375 376 377 377 377 377 378 380 380 381 382 383 383

List of Tables		
List of Figures		390
16.2.18	Plc Data Group	
16.2.17	Process Image Group	
16.2.16	Ethernet IP Group	
16.2.15	Modbus Group	
16.2.14	Plc Connection Group	
16.2.13	Snmp User Trap String Group	
16.2.12	Snmp Trap String Group	

1 Notes about this Documentation

Note

Keep this documentation!

The operating instructions are part of the product and shall be kept for the entire lifetime of the device. They shall be transferred to each subsequent owner or user of the device. Care must also be taken to ensure that any supplement to these instructions are included, if applicable.

1.1 Validity of this Documentation

This documentation is only applicable to the device: "Programmable Fieldbus Controller ETHERNET" 750-881 of the WAGO-I/O-SYSTEM 750 series.

The Programmable Fieldbus Controller ETHERNET 750-881 shall only be installed and operated according to the instructions in this manual and the system description for the WAGO-I/O-SYSTEM 750.

NOTICE

Consider power layout of the WAGO-I/O-SYSTEM 750!

In addition to these operating instructions, you will also need the system description for the WAGO-I/O-SYSTEM 750, which can be downloaded at <u>www.wago.com</u>. There, you can obtain important information including information on electrical isolation, system power and supply specifications.

1.2 Copyright

This Manual, including all figures and illustrations, is copyright-protected. Any further use of this Manual by third parties that violate pertinent copyright provisions is prohibited. Reproduction, translation, electronic and phototechnical filing/archiving (e.g., photocopying) as well as any amendments require the written consent of WAGO Kontakttechnik GmbH & Co. KG, Minden, Germany. Non-observance will involve the right to assert damage claims.

1.3 Symbols

▲ DANGER

Personal Injury!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

Personal Injury Caused by Electric Current!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Personal Injury!

Indicates a moderate-risk, potentially hazardous situation which, if not avoided, could result in death or serious injury.

Personal Injury!

Indicates a low-risk, potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Damage to Property!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

NOTICE

Damage to Property Caused by Electrostatic Discharge (ESD)!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

Note

Important Note!

Indicates a potential malfunction which, if not avoided, however, will not result in damage to property.

Information

Additional Information: Refers to additional information which is not an integral part of this documentation (e.g., the Internet).

1.4 Number Notation

Table 1: Number Notation

Number code	Example	Note
Decimal	100	Normal notation
Hexadecimal	0x64	C notation
Binary	'100'	In quotation marks, nibble separated with
	'0110.0100'	dots (.)

1.5 Font Conventions

Table 2: Font Conventions

Font type	Indicates
italic	Names of paths and data files are marked in italic-type.
Menu	Menu items are marked in bold letters.
	e.g.: Save
>	A greater-than sign between two names means the selection of a
	menu item from a menu.
	e.g.: File > New
Input	Designation of input or optional fields are marked in bold letters,
_	e.g.: Start of measurement range
"Value"	Input or selective values are marked in inverted commas.
	e.g.: Enter the value "4 mA" under Start of measurement range .
[Button]	Pushbuttons in dialog boxes are marked with bold letters in square
	brackets.
	e.g.: [Input]
[Key]	Keys are marked with bold letters in square brackets.
	e.g.: [F5]

2 Important Notes

This section includes an overall summary of the most important safety requirements and notes that are mentioned in each individual section. To protect your health and prevent damage to devices as well, it is imperative to read and carefully follow the safety guidelines.

2.1 Legal Bases

2.1.1 Subject to Changes

WAGO Kontakttechnik GmbH & Co. KG reserves the right to provide for any alterations or modifications that serve to increase the efficiency of technical progress. WAGO Kontakttechnik GmbH & Co. KG owns all rights arising from the granting of patents or from the legal protection of utility patents. Third-party products are always mentioned without any reference to patent rights. Thus, the existence of such rights cannot be excluded.

2.1.2 Personnel Qualifications

All sequences implemented on Series 750 devices may only be carried out by electrical specialists with sufficient knowledge in automation. The specialists must be familiar with the current norms and guidelines for the devices and automated environments.

All changes to the coupler or controller should always be carried out by qualified personnel with sufficient skills in PLC programming.

2.1.3 Use of the 750 Series in Compliance with Underlying Provisions

Couplers, controllers and I/O modules found in the modular WAGO-I/O-SYSTEM 750 receive digital and analog signals from sensors and transmit them to the actuators or higher-level control systems. Using programmable controllers, the signals can also be (pre-)processed.

The components have been developed for use in an environment that meets the IP20 protection class criteria. Protection against finger injury and solid impurities up to 12.5 mm diameter is assured; protection against water damage is not ensured. Unless otherwise specified, operation of the components in wet and dusty environments is prohibited.

Operating 750 Series components in home applications without further measures is only permitted if they meet the emission limits (emissions of interference) according to EN 61000-6-3. You will find the relevant information in the section on "WAGO-I/O-SYSTEM 750" \rightarrow "System Description" \rightarrow "Technical Data" in the manual for the used fieldbus coupler/controller.

Appropriate housing (per 94/9/EG) is required when operating the WAGO-I/O-SYSTEM 750 in hazardous environments. Please note that a prototype test certificate must be obtained that confirms the correct installation of the system in a housing or switch cabinet.

2.1.4 Technical Condition of Specified Devices

The components to be supplied Ex Works, are equipped with hardware and software configurations, which meet the individual application requirements. WAGO Kontakttechnik GmbH & Co. KG will be exempted from any liability in case of changes in hardware or software as well as to non-compliant usage of components.

Please send your request for modified and new hardware or software configurations directly to WAGO Kontakttechnik GmbH & Co. KG.

2.2 Safety Advice (Precautions)

For installing and operating purposes of the relevant device to your system the following safety precautions shall be observed:

Do not work on components while energized! All power sources to the device shall be switched off prior to performing any installation, repair or maintenance work.

Installation only in appropriate housings, cabinets or in electrical operation rooms!

The WAGO-I/O-SYSTEM 750 and its components are an open system. As such, install the system and its components exclusively in appropriate housings, cabinets or in electrical operation rooms. Allow access to such equipment and fixtures to authorized, qualified staff only by means of specific keys or tools.

NOTICE

Replace defective or damaged devices!

Replace defective or damaged device/module (e.g., in the event of deformed contacts), since the long-term functionality of device/module involved can no longer be ensured.

NOTICE

Protect the components against materials having seeping and insulating properties!

The components are not resistant to materials having seeping and insulating properties such as: aerosols, silicones and triglycerides (found in some hand creams). If you cannot exclude that such materials will appear in the component environment, then install the components in an enclosure being resistant to the above-mentioned materials. Clean tools and materials are imperative for handling devices/modules.

NOTICE

Cleaning only with permitted materials!

Clean soiled contacts using oil-free compressed air or with ethyl alcohol and leather cloths.

NOTICE

Do not use any contact spray!

Do not use any contact spray. The spray may impair contact area functionality in connection with contamination.

NOTICE

Do not reverse the polarity of connection lines!

Avoid reverse polarity of data and power supply lines, as this may damage the devices involved.

NOTICE

Avoid electrostatic discharge!

The devices are equipped with electronic components that you may destroy by electrostatic discharge when you touch. Pay attention while handling the devices to good grounding of the environment (persons, job and packing).

2.3 Special Use Conditions for ETHERNET Devices

If not otherwise specified, ETHERNET devices are intended for use on local networks. Please note the following when using ETHERNET devices in your system:

- Do not connect control components and control networks to an open network such as the Internet or an office network. WAGO recommends putting control components and control networks behind a firewall.
- Limit physical and electronic access to all automation components to authorized personnel only.
- Change the default passwords before first use! This will reduce the risk of unauthorized access to your system.
- Regularly change the passwords used! This will reduce the risk of unauthorized access to your system.
- If remote access to control components and control networks is required, use a Virtual Private Network (VPN).
- Regularly perform threat analyses. You can check whether the measures taken meet your security requirements.
- Use "defense-in-depth" mechanisms in your system's security configuration to restrict the access to and control of individual products and networks.

3 System Description

The WAGO-I/O-SYSTEM 750 is a modular, fieldbus-independent input/output system (I/O system). The configuration described here consists of a fieldbus coupler/controller (1) and the modular I/O modules (2) for any signal shapes that form the fieldbus node together. The end module (3) completes the node and is required for correct operation of the fieldbus node.

Figure 1: Fieldbus node

Couplers/controllers are available for different fieldbus systems.

The extended ECO couplers contain the fieldbus interface, electronics and a power supply terminal. The fieldbus interface forms the physical interface to the relevant fieldbus. The electronics process the data of the bus modules and make it available for the fieldbus communication. The 24 V system supply and the 24 V field supply are fed in via the integrated power supply terminal.

The coupler/controller communicates via the relevant fieldbus. The programmable fieldbus controller (PFC) enables the implementation of additional PLC functions. Programming is done with the WAGO-I/O-*PRO* in accordance with IEC 61131-3.

Bus modules for diverse digital and analog I/O signals as well as special functions can be connected to the fieldbus coupler/controller. The communication between the fieldbus coupler/controller and the bus modules is carried out via an internal bus.

The WAGO-I/O-SYSTEM 750 has a clear port level with LEDs for status indication, insertable mini WSB markers and pullout group marker carriers for marking.

The 1, 2 or 3 wire technology supplemented by a ground wire connection allows for direct sensor or actuator wiring.

3.1 Manufacturing Number

The serial number indicates the delivery status directly after production. This number is part of the labeling on the side of each component. In addition, the serial number is printed on the cover cap of the configuration and programming interface of the fieldbus coupler/controller, so that it can also be read when installed.

Figure 2: Example of a manufacturing number

The manufacturing number consists of the production week and year, the software version (if available), the hardware version of the component, the firmware loader (if available) and further internal information for WAGO Kontakttechnik GmbH & Co. KG.

3.2 Hardware Address (MAC ID)

Each Programmable Fieldbus Controller ETHERNET has a unique and internationally unambiguous physical address, referred to as the MAC-ID (Media Access Control Identity). This is located on the rear of the controller and on a self-adhesive tear-off label on the side of the controller. The MAC ID has a set length of 6 bytes (48 bits) (hexadecimal). The first three bytes identify the manufacturer (e.g. 00:30 DE for WAGO). The second 3 bytes indicate the consecutive serial number for the hardware.

3.3 Component Update

For the case of an Update of one component, the lateral marking on each component contains a prepared matrix.

This matrix makes columns available for altogether three updates to the entry of the current update data, like production order number (NO; starting from calendar week 13/2004), update date (DS), software version (SW), hardware version (HW) and the firmware loader version (FWL, if available).

Current Version data for		1. Update	2. Update	3. Update	
Production Order Number	NO				← only starting from calendar week 13/2004
Datestamp	DS				
Software index	SW				
Hardware index	HW				
Firmware loader index	FWL				\leftarrow only for coupler/controller

If the update of a component took place, the current version data are registered into the columns of the matrix.

Additionally with the update of a fieldbus coupler or controller also the cover of the configuration and programming interface of the coupler or controller is printed on with the current manufacturing and production order number.

The original manufacturing data on the housing of the component remain thereby.

3.4 Storage, Assembly and Transport

Wherever possible, the components are to be stored in their original packaging. Likewise, the original packaging provides optimal protection during transport.

When assembling or repacking the components, the contacts must not be soiled or damaged. The components must be stored and transported in appropriate containers/packaging. Thereby, the ESD information is to be regarded.

3.5 Assembly Guidelines/Standards

- DIN 60204 Electrical equipping of machines
- DIN EN 50178 Equipping of high-voltage systems with electronic components (replacement for VDE 0160)
- EN 60439 Low voltage switchgear assemblies

3.6 Power Supply

3.6.1 Isolation

Within the fieldbus node, there are three electrically isolated potentials:

- Electrically isolated fieldbus interface via transformer
- Electronics of the couplers/controllers and the bus modules (internal bus)
- All bus modules have an electrical isolation between the electronics (internal bus, logic) and the field electronics. Some digital and analog input modules have each channel electrically isolated, please see catalog.

Figure 3: Isolation for Standard Couplers/Controllers and extended ECO Couplers

Note

\rightarrow

Ensure protective conductor function is present (via ring feeding if required)!

Pay attention that the ground wire connection must be present in each group. In order that all protective conductor functions are maintained under all circumstances, it is recommended that a ground wire be connected at the beginning and the end of a potential group (please see chapter "Grounding" > "Grounding Protection", Ring Feeding). Thus, if a bus module comes loose from a composite during servicing, therefore the protective conductor connection is still guaranteed for all connected field devices.

When you use a joint power supply unit for the 24 V system supply and the 24 V field supply, the electrical isolation between the internal bus and the field level is eliminated for the potential group.

3.6.2 System Supply

3.6.2.1 Connection

The WAGO-I/O-SYSTEM 750 requires a 24 V direct current system supply. The power supply is provided via the coupler/controller and, if necessary, in addition via the internal system supply modules (750-613). The voltage supply is reverse voltage protected.

NOTICE

Do not use an incorrect voltage/frequency!

The use of an incorrect supply voltage or frequency can cause severe damage to the component.

Figure 4: System supply for standard coupler/controller and extended ECO couplers

The fed DC 24 V supplies all internal system components, e.g. coupler/controller electronics, fieldbus interface and bus modules via the internal bus (5 V system voltage). The 5 V system voltage is electrically connected to the 24 V system supply.

Note

Only reset the system simultaneously for all supply modules!

Reset the system by simultaneously switching the system supply on all supply modules (fieldbus coupler/controller and potential supply module with bus power supply 750-613) off and on again.

3.6.2.2 Dimensioning

Note

Recommendation

A stable power supply voltage cannot be taken for granted always and everywhere. Therefore, regulated power supply units should be used in order to guarantee the quality of the supply voltage.

The supply capacity of the coupler/controller or the internal system supply module (750-613) can be taken from the technical data of the components.

Table 3: Alignment

Internal current	Current consumption via system voltage:	
consumption*)	5 V for electronics of bus modules and coupler/controller	
Total current	Available current for the bus modules. Provided by the bus	
for bus terminals*)	power supply unit. See coupler/controller and internal	
	system supply module (750-613)	

*) See current catalog, manuals, Internet

Example:

Calculating the current consumption on an Example Coupler:

Internal current consumption	380 mA at 5 V
Residual current for bus modules	1620 mA at 5 V
Sum I _{(5 V) total}	2000 mA at 5V

The internal current consumption is indicated in the technical data for each bus terminal. In order to determine the total requirement, add together the values of all bus modules in the node.

Note

Observe total current of I/O modules, re-feed the potential if required! If the sum of the internal current consumption exceeds the residual current for bus modules, then an internal system supply module (750-613) must be placed before the module where the permissible residual current was exceeded.

Example:

Calculating the total current on the Example Coupler described above:

A node with the example coupler, which is described above, consists of: 20 relay modules (750-517) and 10 digital input modules (750-405).

Sum	1820 mA
	10 * 2 mA = 20 mA
Internal current consumption	20 * 90 mA = 1800 mA

The example coupler can provide 1620 mA (see previous example) for the bus modules. This value is given in the associated data sheet. Consequently, an internal system supply module (750-613), e. g. in the middle of the node, should be added.

Note

Recommendation

You can configure with the WAGO ProServe[®] Software **smartDESIGNER**, the assembly of a fieldbus node. You can test the configuration via the integrated plausibility check.

The maximum input current of the 24 V system supply is 500 mA. The exact electrical consumption $(I_{(V)})$ can be determined with the following formulas:

Coupler or controller

 $I_{(5 V) total}$ = Sum of all the internal current consumption of the connected bus modules + internal current consumption coupler/controller

Internal system supply module 750-613

 $I_{(5 V) total}$ = Sum of all the internal current consumption of the connected bus modules at internal system supply module

Input current $I_{(24 \text{ V})} = \frac{5 \text{ V}}{24 \text{ V}} * \frac{I_{(5 \text{ V}) \text{ total}}}{\eta}$

 $\eta=0.87$

(87 % Efficiency of the power supply at nominal load 24 V)

Note

Activate all outputs when testing the current consumption!

If the electrical consumption of the power supply point for the 24 V system supply exceeds 500 mA, then the cause may be an improperly designed node or a defect.

During the test, you must activate all outputs, in particular those of the relay modules.

3.6.3 Field Supply

3.6.3.1 Connection

Sensors and actuators can be directly connected to the relevant channel of the bus module in 1/4 conductor connection technology. The bus module supplies power to the sensors and actuators. The input and output drivers of some bus modules require the field side supply voltage.

The coupler/controller provides field side power (DC 24 V). In this case it is a passive power supply without protection equipment. Power supply modules are available for other potentials, e. g. AC 230 V.

Likewise, with the aid of the power supply modules, various potentials can be set up. The connections are linked in pairs with a power contact.

Figure 6: Field supply (sensor/actuator) for standard couplers/controllers and extended ECO couplers

The supply voltage for the field side is automatically passed to the next module via the power jumper contacts when assembling the bus modules.

The current load of the power contacts must not exceed 10 A on a continual basis. The current carrying capacity between two connection terminals is identical to the load capacity of the connection wires.

By inserting an additional power supply module, the field supply via the power contacts is disrupted. From there a new power supply occurs which may also contain a new voltage potential.

Note

Some bus modules have no or very few power contacts (depending on the I/O function). Due to this, the passing through of the relevant potential is disrupted. If you require a field supply for subsequent bus modules, then you must use a power supply module.

Note the data sheets of the bus modules.

Note

Use a spacer module when setting up a node with different potentials! In the case of a node setup with different potentials, e.g. the alteration from

DC 24 V to AC 230 V, you should use a spacer module. The optical separation of the potentials acts as a warning to heed caution in the case of wiring and maintenance works. Thus, you can prevent the results of wiring errors.

3.6.3.2 Fusing

Internal fusing of the field supply is possible for various field voltages via an appropriate power supply module.

Table 4: Power supply modules

Order No.	Field Voltage
750-601	24 V DC, Supply/Fuse
750-609	230 V AC, Supply/Fuse
750-615	120 V AC, Supply/Fuse
750-610	24 V DC, Supply/Fuse/Diagnosis
750-611	230 V AC, Supply/Fuse/Diagnosis

Figure 7: Supply module with fuse carrier (Example 750-610)

NOTICE

Observe the maximum power dissipation and, if required, UL requirements! In the case of power supply modules with fuse holders, you must only use fuses with a maximum dissipation of 1.6 W (IEC 127). For UL approved systems only use UL approved fuses.

In order to insert or change a fuse, or to switch off the voltage in succeeding bus modules, the fuse holder may be pulled out. In order to do this, use a screwdriver for example, to reach into one of the slits (one on both sides) and pull out the holder.

Figure 8: Removing the fuse carrier

Lifting the cover to the side opens the fuse carrier.

Figure 9: Opening the fuse carrier

Figure 10: Change fuse

After changing the fuse, the fuse carrier is pushed back into its original position.

Alternatively, fusing can be done externally. The fuse modules of the WAGO series 281 and 282 are suitable for this purpose.

Figure 11: Fuse modules for automotive fuses, series 282

Figure 12: Fuse modules for automotive fuses, series 2006

Figure 13: Fuse modules with pivotable fuse carrier, series 281

Figure 14: Fuse modules with pivotable fuse carrier, series 2002

3.6.4 Supplementary Power Supply Regulations

The WAGO-I/O-SYSTEM 750 can also be used in shipbuilding or offshore and onshore areas of work (e. g. working platforms, loading plants). This is demonstrated by complying with the standards of influential classification companies such as Germanischer Lloyd and Lloyds Register.

Filter modules for 24 volt supply are required for the certified operation of the system.

Order No.	Name	Description
750-626	Supply Filter	Filter module for system supply and field supply (24 V, 0 V), i. e. for fieldbus coupler/controller and bus power supply (750-613)
750-624	Supply Filter	Filter module for the 24 V- field supply (750-602, 750-601, 750-610)

Table 5: Filter modules for 24-volt supply

Therefore, the following power supply concept must be absolutely complied with.

Figure 15: Power supply concept

Note

Additional supply module as ground (earth) conductor/fuse protection! Only insert another potential power terminal 750-601/602/610 behind the filter terminal 750-626 if you need the protective earth conductor on the lower power contact or if you require a fuse protection.

3.6.5 Supply Example

The system supply and the field supply shall be separated!

You should separate the system supply and the field supply in order to ensure bus operation in the event of a short-circuit on the actuator side.

Information

Note

Additional information about the ring feeding

In order to increase the system security, a ring feeding of the earth potential is recommended. Thus, if a bus module comes loose from a composite during servicing, then the protective conductor connection is still guaranteed for all connected field devices. With the ring feeding, protective grounding is connected at the beginning and the end of a potential group.

Please refer for further information to chapter "Grounding "> "Grounding Protection", Ring Feeding.

Figure 16: Supply example for standard couplers/controllers and extended ECO couplers

3.6.6 Power Supply Unit

The WAGO-I/O-SYSTEM 750 requires a 24 V direct current system supply with a maximum deviation of -15 % or +20 %.

Note Recommendation

A stable network supply cannot be taken for granted always and everywhere. Therefore, you should use regulated power supply units in order to guarantee the quality of the supply voltage.

A buffer (200 µF per 1 A current load) should be provided for brief voltage dips.

Note

Power failure time is not acc. to IEC 61131-2!

Note that the power failure time in a node with maximal components is not 10 ms, according to the defaults of the IEC61131-2 standard.

The electrical requirement for the field supply is to be determined individually for each power supply point. Thereby all loads through the field devices and bus modules should be considered. The field supply as well influences the bus modules, as the inputs and outputs of some bus modules require the voltage of the field supply.

Note

System and field supply shall be isolated from the power supply!

You should isolate the system supply and the field supply from the power supplies in order to ensure bus operation in the event of short circuits on the actuator side.

Table 6: WAGO Power Supply Unit

WAGO Power	Description
Supply Unit	
787-612	Primary switched mode;
	DC 24 V; 2,5 A Input nominal voltage AC 230 V
787-622	Primary switched mode;
	DC 24 V; 5 A Input nominal voltage AC 230 V
787-632	Primary switched mode;
	DC 24 V; 10 A Input nominal voltage AC 230/115 V
	Rail-mounted modules with universal mounting carrier
288-809	AC 115 V/DC 24 V; 0,5 A
288-810	AC 230 V/DC 24 V; 0,5 A
288-812	AC 230 V/DC 24 V; 2 A
288-813	AC 115 V/DC 24 V; 2 A

3.7 Grounding

3.7.1 Grounding the DIN Rail

3.7.1.1 Framework Assembly

When setting up the framework, the carrier rail must be screwed together with the electrically conducting cabinet or housing frame. The framework or the housing must be grounded. The electrical connection is established via the screw. Thus, the carrier rail is grounded.

A DANGER

Ensure sufficient grounding is provided!

You must take care to ensure the flawless electrical connection between the carrier rail and the frame or housing in order to guarantee sufficient grounding.

3.7.1.2 Insulated Assembly

Insulated assembly has been achieved when there is constructively no direct ohmic contact between the cabinet frame or machine parts and the carrier rail. Here the earth ground must be set up via an electrical conductor accordingly valid national safety regulations.

Note Recommendation

The optimal setup is a metallic assembly plate with grounding connection with an electrical conductive link with the carrier rail.

The separate grounding of the carrier rail can be easily set up with the aid of the WAGO ground wire terminals.

Table 7: WAGO ground wire terminals

Order No.	Description
283-609	1-conductor ground (earth) terminal block make an automatic contact
	to the carrier rail; conductor cross section: $0.2 - 16 \text{ mm}^2$
	Note: Also order the end and intermediate plate (283-320).

3.7.2 Grounding Function

The grounding function increases the resistance against disturbances from electromagnetic interferences. Some components in the I/O system have a carrier rail contact that dissipates electro-magnetic disturbances to the carrier rail.

Figure 17: Carrier rail contact

A DANGER

Ensure sufficient grounding is provided!

You must take care to ensure the direct electrical connection between the carrier rail contact and the carrier rail.

The carrier rail must be grounded.

For information on carrier rail properties, see chapter "Assembly onto Carrier Rail > Carrier Rail Properties".

3.7.3 Grounding Protection

For the field side, the ground wire is connected to the lowest connection terminals of the power supply module. The ground connection is then connected to the next module via the Power Jumper Contact (PJC). If the bus module has the lower power jumper contact, then the ground wire connection of the field devices can be directly connected to the lower connection terminals of the bus module.

Note

Re-establish the ground connection when the connection to the power jumper contacts is disrupted!

Should the ground conductor connection of the power jumper contacts within the node become disrupted, e. g. due to a 4-channel bus terminal, the ground connection will need to be re-established.

The ring feeding of the grounding potential will increase the system safety. When one bus module is removed from the group, the grounding connection will remain intact.

The ring feeding method has the grounding conductor connected to the beginning and end of each potential group.

Figure 18: Ring-feeding

Note

Observe grounding protection regulations!

You must observe the regulations relating to the place of assembly as well as the national regulations for maintenance and inspection of the grounding protection.

3.8 Shielding

3.8.1 General

Use of shielded cables reduces electromagnetic interference and thus increases signal quality. Measurement errors, data transmission errors and interference due to excessive voltage can be prevented.

Note

Connect the cable shield to the ground potential!

Integrated shielding is mandatory to meet the technical specifications in regards to measuring accuracy. Connect the cable shield and ground potential at the inlet to the cabinet or housing. This allows induced interference to dissipate and to be kept away from devices in the cabinet or housing.

Note

Improve shielding performance by placing the shield over a large area! Higher shielding performance is achieved via low-impedance connection between shield and ground. For this purpose, connect the shield over a large surface area, e.g., WAGO shield connecting system. This is especially recommended for large-scale systems where equalizing current or high impulse-type currents caused by atmospheric discharge may occur.

Note

Keep data and signal lines away from sources of interference! Route data and signal lines separately from all high voltage cables and other sources of high electromagnetic emission (e.g., frequency converter or drives).

3.8.2 Bus cables

The shielding of the bus line is described in the respective configuration guidelines and standards of the bus system.

3.8.3 Signal lines

I/O modules for analog signals and some interface I/O modules are equipped with shield clamps.

Note

Only use shielded signal lines for analog signals and I/O modules which are equipped with shield clamps. Only then can you ensure that the accuracy and interference immunity specified for the respective I/O module can be achieved even in the presence of interference acting on the signal cable.

3.8.4 WAGO Shield Connecting System

The WAGO shield connecting system consists of shield clamping saddles, busbars and various mounting carriers. These components can be used to achieve many different configurations.

Figure 19: Example of the WAGO shield connecting system

Figure 20: Application of the WAGO shield connecting system

4 Device Description

The 750-881 programmable Fieldbus Controller (PFC) combines the functionality of an ETHERNET-based Fieldbus Coupler with the functionality of a Programmable Logic Controller (PLC).

This controller can be used for applications in machine and plant construction as well as in the process industry and building technology.

The two Ethernet interfaces and the integrated switch make possible the wiring of the fieldbus in line topology. Thus additional infrastructure elements such as switches or hubs can be void. Both interfaces support Autonegotiation and Auto-MDI (X).

With the DIP switch the last byte of the IP address, as well as the assignment of the IP address (DHCP, BootP, firm setting) can be given.

In the Fieldbus Controller, all input signals from the sensors are combined. After connecting the ETHERNET TCP/IP Fieldbus Controller, the Fieldbus Controller determines which I/O modules are on the node and creates a local process image from these. Analog and specialty module data is sent via words and/or bytes; digital data is grouped bit-by-bit.

The local process image is divided into two data zones containing the data received and the data to be sent.

The data of the analog modules is mapped first into the process image. The modules are mapped in the order of their physical position after the controller.

The bits of the digital modules are combined into words and then mapped after the analog ones in the process image. If the number of digital I/Os is greater than 16 bits, the Fieldbus Controller automatically begins a new word.

According to IEC 61131-3 programming, data processing occurs in the PFC. The process results can be output directly on sensors/actuators or transmitted via fieldbus to the higher-order controller.

The fieldbus connection consists of two ports (RJ-45). An ETHERNET switch integrated in the PFC, which is operated in the store and forward mode, connects those fieldbus ports with the CPU. Both ports support:

- 10BASE-T / 100BASE-TX
- Full / Half duplex
- Autonegotiation
- Auto-MDI(X)

WAGO-I/O-*PRO* creates application programs that adhere to IEC 61131-3. CoDeSys by 3S (the standard programming system) serves as the basis of WAGO-I/O-*PRO*, which was expanded specifically with the target files for all WAGO controllers.

The fieldbus controller has 1 MB program memory, 512 KB data memory and 32 KB retentive memory available for the IEC 61131-3 programming.

The user can access all fieldbus and I/O data.

In order to send process data via ETHERNET, the controller supports a series of network protocols.

The MODBUS/TCP(UDP) protocol and the ETHERNET/IP protocol are implemented for exchanging process data. Both of these communication protocols can be used either together or separately. For this, the write access to the I/O modules (access via PFC, MODBUS/TCP or EtherNet/IP) is specified in an xml file.

For the management and diagnosis of the system, the HTTP, SNTP and SNMP protocols are available.

For the data transfer via ETHERNET the FTP is available.

For the automatic assignment of the IP address in the network, kann alternatively DHCP or BootP can be used.

The user can program clients and servers via an internal socket-API for all transport protocols (TCP, UDP, etc.) with functional modules. Library functions are available for function expansion.

With the IEC 61131-3 library "SysLibRTC.lib," for example, a buffered real-time clock with date, time (1-second resolution), alarm functions and a timer is incorporated. This clock is supplied with auxiliary power during a power failure.

This controller is based on a 32-bit CPU with multitasking capabilities, allowing several programs to be executed in a near-simultaneous manner.

The controller has an internal server for the configuration and administration of the system.

By default, the controller's built-in HTML pages contain information on the configuration and status of the PFC, and can be read using a normal web browser. In addition, a file system is implemented that allows you to store custom HTML pages in the controller using FTP download or to store your own HTML pages or call up programs directly.

Table 8: Compatibility

Programming tool:	CoDeSys	
-Version	V2.3.9.19	
Fieldbus controller:		
750-881	\checkmark	

Commentary:

✓	Fieldbus controller compatible with WAGO-I/O-PRO version, independent of the controller	
	hard- or software.	

4.1 View

The view below shows the three parts of the device:

- The fieldbus connection is on the left side.
- LEDs for operation status, bus communication, error messages and diagnostics, as well as the service interface are in the middle area.
- The right side shows a power supply unit for the system supply and for the field supply of the attached I/O modules via power jumper contacts. LEDs show the status of the operating voltage for the system and field supply (jumper contacts).

Figure 21: View ETHERNET TCP/IP Fieldbus Controller

No.	Designati	Meaning	Details see Chapter:
1	LINK ACT 1, 2, MS, NS, I/O, USR	Status LEDs Fieldbus	"Device Description" > "Display Elements"
2		Group marking carrier (retractable) with additional marking possibility on two miniature WSB markers	
3	A, B or C	Status LED's System/Field Supply	"Device Description" > "Display Elements"
4		Data Contacts	"Connect Devices" > "Data Contacts/Internal Bus"
5	24 V, 0 V	CAGE CLAMP [®] Connections System Supply	"Connect Devices" > "Connecting a conductor to the CAGE CLAMP [®] "
6	+	CAGE CLAMP [®] Connections Field Supply DC 24 V	"Connect Devices" > "Connecting a conductor to the CAGE CLAMP [®] "
7		Power Jumper Contact 24 V DC	"Connect Devices" > "Power Contacts/ Field Supply"
8		Unlocking Lug	"Assembly" > "Inserting and Removing Devices"
9	-	CAGE CLAMP [®] Connections Field Supply 0 V	"Connect Devices" > "Connecting a conductor to the CAGE CLAMP [®] "
10		Power Jumper Contact 0 V	"Connect Devices" > "Power Contacts/ Field Supply"
11	(Earth)	CAGE CLAMP [®] Connections Field Supply (Earth)	"Connect Devices" > "Connecting a conductor to the CAGE CLAMP [®] "
12		Power Jumper Contact (Earth)	"Connect Devices" > "Power Contacts/ Field Supply"
13		Service Interface (open flap)	"Device Description" > "Operating Elements"
14	X1, X2	Fieldbus connection 2 x RJ-45 as 2-Port ETHERNET Switch	"Device Description" > "Connectors"
15		Locking Disc	"Assembly" > "Inserting and Removing Devices"
16		Address Selection Switch	"Device Description" > "Operating Elements"

Table 9: Legend to the View ETHERNET TCP/IP Fieldbus Controller

4.2 Connectors

4.2.1 Device Supply

The device is powered via terminal blocks with CAGE CLAMP[®] connections. The device supply generates the necessary voltage to power the electronics of the device and the internal electronics of the connected I/O modules.

The fieldbus interface is galvanically separated from the electrical potential of the device.

Figure 22: Device Supply

4.2.2 Fieldbus Connection

The connection to the fieldbus is made via two RJ-45 plugs (also called "Western plugs"), which are connected to the fieldbus controller via an integrated switch.

The integrated switch works in store-and-forward operation and for each port, supports the transmission speeds 10/100 Mbit as well as the transmission modes full and half-duplex.

The wiring of these plugs corresponds to the specifications for 100BaseTX, which prescribes a category 5 twisted pair cable as the connecting cable. Cable types S-UTP (Screened Unshielded Twisted Pair) and STP (Shielded Twisted Pair) with a maximum segment length of 100 m (approximately 328.08 feet) can be used.

The RJ-45 socket is physically lower, allowing the coupler to fit in an 80 mm high enclosure once connected.

Table 10: RJ-45 Connector and RJ-45 Connector Configuration

Not for use in telecommunication circuits!

Only use devices equipped with ETHERNET or RJ-45 connectors in LANs. Never connect these devices with telecommunication networks.

4.3 Display Elements

The operating condition of the controller or the node is displayed with the help of illuminated indicators in the form of light-emitting diodes (LEDs). The LED information is routed to the top of the case by light fibres. In some cases, these are multi-colored (red, green or red/green (=orange)).

Figure 24: Display Elements

For the diagnostics of the different ranges fieldbus, node and supply voltage, the LED's can be divided into three groups:

LED	Color	Meaning
LINK ACT 1	green	indicates a connection to the physical network at port 1
LINK ACT 2	green	indicates a connection to the physical network at port 2
MS	red/green	indicates the status of the node
NS	red/green	indicates the network status

Table 11: Display Elements Fieldbus Status

Table 12: Display Elements Node Status

LED	Color	Meaning
I/O	red/green/ orange	indicates the operation of the node and signals via a blink code faults encountered
USR	red/green/ orange	indicates information to the Internal bus faults, controlled from the user programm according to the visualization programming.

Table 13: Display Elements Supply Voltage

LED	Color	Meaning
Α	green	indicates the status of the operating voltage - system
В	green	indicates the status of the operating voltage - power jumper contacts

Information

More information about the LED Signaling

Read the detailed description for the evaluation of the displayed LED-Signals in the chapter "Diagnostics" > "LED Signaling".

4.4 **Operating Elements**

4.4.1 Service Interface

The Service Interface is to find behind the flap.

It is used for the communication with WAGO-I/O-*CHECK*, WAGO-I/O-*PRO* and for downloading firmware.

Fig. 25: Service interface for programming and configuration (closed and open door)

Table	14:	Service	port
1 uoic	1 1.	0011100	port

Number	Description
1	Open the damper
2	Configuration and Programming Interface

NOTICE

Device must be de-energized!

To prevent damage to the device, unplug and plug in the communication cable only when the device is de-energized!

The 750-920 or 750-923 Communication Cable is connected to the 4-pole header.

4.4.2 Mode Selector Switch

The mode selector switch is located behind the cover flap.

Figure 26: Mode selector switch (closed and open damper of the service port)

Table 15: Mode	selector	switch
----------------	----------	--------

Number	Description
1	Open the damper
2	Operating mode switch

The operating mode switch determines the loading, starting and stopping of the PLC-application by the controller. This multifunction sliding switch features 3 slide lock positions and a push-button function.

The sliding switch is designed for a number of operations in compliance with EN61131T2.

NOTICE

Property damages due to set outputs!

Please note that set outputs remain set, when you switch the operating switch from "RUN" to "STOP" during the current operation. Since the program is no longer processed, software-related switch offs, i.e. by initiators, are ineffective. Therefore, program or define all outputs, so that these switch to a safe mode at a program stop.

Note

Defining the outputs for a program stop!

In order to switch the outputs to a safe mode at the program stop, define the status of the outputs at "STOP".

- For this, open in the web-based Management System (WBM) a website via the "PLC" link, on which you can define the function *Process image - Set outputs to zero, if user program is stopped*.
- 2. Now activate this function by placing a check mark in the control box, then all outputs are set to zero, if this function is not activated, the outputs remain at the last current value.

Note

Mode selector switch position is negligible in software start/stop! The position of the mode selector switch is not important when starting or stopping the PFC application from WAGO-I/O-*PRO*.

One of the following functions is active, depending in which of the three static positions "top", "center" or "bottom" the switch is located at a power on or in a hardware or software reset:

Positions of the mode	Function	
selector switch		
Up position	"RUN" - activate program processing,	
	Boot- project (if available) is started.	
Center position	"STOP" - stop program processing,	
	PFC- application is stopped.	
Down position	After a PowerOn reset, the controller is in Bootstrap mode.	

Table 1: Mode selector switch positions, static positions at Power On / reset

The controller performs the following functions, if a position change of the switch is performed during the current operation:

Position change of the mode selector switch	Function
From the top to the center position	"STOP" - stop program processing, PFC- application is stopped.
From the center to the top position	"RUN" - activate program processing, Boot project (if available) is started.
From the center to the bottom position	No reaction. After Power On/Reset the Bootstrap loader is started on the service interface.
From the bottom to the center position	No reaction.
Press down (e.g., using a screwdriver)	Hardware reset All outputs are reset; variables are set to 0, FALSE or to an initial value. Retain variables or markers are not changed. A hardware reset can be performed either at STOP or at RUN at any position of the mode selector switch. Restart the fieldbus controller.

Table 2: Mode selector switch positions, dynamic positions during the current operation

The operating mode is changed internally at the end of a PFC cycle.

4.4.3 Address Selection Switch

Figure 27: Address Selection Switch

The 8-pole DIP switch is used to set the IP address and to select the protocol for setting the IP address.

Table 16: Meaning of DIP switch positions

Address	Meaning
0	The IP parameter is configured via the web-based management. BootP, DHCP and application of the values from the EEPROM are available to the user. In the default status, configuration via BootP is activated.
1-254	The configuration of the IP address consists of the network address (configurable and 192.168.1 by default) and the value set for the DIP switch.
255	The DHCP protocol is used to configure the IP parameters.

4.5 Technical Data

4.5.1 Device Data

Table 17: Technical data – Device data

Width	62 mm
Height (from upper-edge of DIN 35)	65 mm
Length	100 mm
Weight	approx. 160 g
Degree of protection	IP 20

4.5.2 System Data

Table 18: Technical data – System data

Number of controllers	Limited by ETHERNET specification;
	max. 20 x 750-881 series connected
Transmission medium	Twisted Pair S/UTP, STP 100 Ω Cat 5
Bus coupler connection	RJ-45
Max. length of fieldbus segment	100 m behind hub and 750-881
Max. length of network	2000 m
Baud rate	10/100 Mbit/s
Protocols	MODBUS/TCP (UDP), ETHERNET/IP, HTTP, BootP, DHCP, DNS, SNTP, FTP, SNMP
Programming	WAGO-I/O-PRO
IEC-61131-3	AWL, KOP, FUP (CFC), ST, AS
Max. number of socket links	3 HTTP, 15 MODBUS/TCP, 10 FTP, 2 SNMP, 5 for IEC-61131-3 program, 2 for WAGO-I/O- <i>PRO</i> , 128 for Ethernet/IP
Powerfail RTC Buffer	at least 6 days
Number of I/O modules - with bus extension	64 250
Configuration	via PC
Program memory	1 Mbyte
Data memory	512 kByte
Non-voltatile memory (retain)	32 kByte
	(16 kByte retain, 16 kByte flag)

4.5.3 Supply

Table	19.	Technical	data -	Supply
1 4010	1).	reenneur	uuuu	Suppry

Voltage supply	DC 24 V (-25 % +30 %)
Input current max.	500 mA at 24 V
Efficiency of the power supply	90 %
Internal current consumption	450 mA at 5 V
Total current for I/O modules	1700 mA at 5 V
Isolation	500 V system/supply
Voltage via power jumper contacts	DC 24 V (-25 % +30 %)
Current via power jumper contacts max.	DC 10 A

4.5.4 Fieldbus MODBUS/TCP

Table 20: Technical data – Fieldbus MODBUS/TCP

Input process image max	2040 Byte
Output process image max	2040 Byte
Input variables max	512 Byte
Output variables max	512 Byte

4.5.5 Accessories

Table 21: Technical data – Accessories	
Miniature WSB Quick marking system	
WAGO-I/O-PRO	

4.5.6 Wire Connection

Table 22: Technical Data Wire Connection

Wire connection	CAGE CLAMP®
Cross section	0.08 mm ² 2.5 mm ² , AWG 28-14
Stripped lengths	8 9 mm / 0.33 in
Power jumper contacts	blade/spring contact, self-cleaning
Voltage drop at I _{max.}	< 1 V/64 modules
Data contacts	slide contact, hard gold plated 1.5 µm, self-cleaning

4.5.7 Climatic environmental conditions

rubic 25. Teeninear Data Chinade environmental conditions		
Operating temperature range	0 °C 55 °C	
Storage temperature range	-25 °C +85 °C	
Relative humidity without condensation	max. 95 %	
Resistance to harmful substances	Acc. to IEC 60068-2-42 and IEC 60068-2-43	
Maximum pollutant concentration at relative humidity < 75%	$\begin{array}{l} SO_2 \leq 25 \ ppm \\ H_2S \leq 10 \ ppm \end{array}$	
Special conditions	Ensure that additional measures for components are taken, which are used in an environment involving: - dust, caustic vapors or gases - ionizing radiation	

Table 23: Technical Data - Climatic environmental conditions

Reduced buffer time at high storage temperature!

Ensure that the storage of devices with a real time clock at high temperatures leads to a reduced buffer time for the real time clock.

4.5.8 Mechanical strength

Table 24: Technical data – Mechanical strength

Vibration resistance	acc. to IEC 60068-2-6	
	Comment to the vibration resistance:	
	a) Type of oscillation:	
	sweep with a rate of change of 1 octave per minute	
	$10 \text{ Hz} \le f \le 57 \text{ Hz}$, const. Amplitude 0,075 mm	
	57 Hz \leq f \leq 150 Hz, const. Acceleration 1 g	
	b) Period of oscillation:	
	10 sweep per axis in each of the 3 vertical axes	
Shock resistance	acc. to IEC 60068-2-27	
	Comment to the shock resistance:	
	a) Type of impulse: half sinusoidal	
	b) Intensity of impulse:	
	15 g peak value, 11 ms maintenance time	
	c) Route of impulse:	
	3 impulses in each pos. And neg. direction of the 3	
	vertical axes of the test object, this means 18 impulses	
	in all	
Free fall	acc. IEC 60068-2-32	
	$\leq 1m \pmod{\text{module in original packing}}$	

4.6 Approvals

Information

More Information about Approvals

Detailed references to the approvals are listed in the document "Overview Approvals **WAGO-I/O-SYSTEM 750**", which you can find on the DVD "AUTOMATION Tools and Docs" (order no. 0888-0412) or via the internet under: <u>www.wago.com</u> \rightarrow Documentation \rightarrow WAGO-I/O-SYSTEM 750 \rightarrow System Description.

The following approvals have been granted to 750-881 fieldbus coupler/controller:

Conformity Marking

us _cUL_{US} (UL508)

TÜV

The following Ex approvals have been granted to 750-881 fieldbus coupler/controller:

07 ATEX 554086 X

ξx

CE

I M2 Ex db I Mb II 3 G Ex nAc IIC T4 Gc II 3 D Ex tc IIIC T135°C Dc

Permissible operation temperature: $0 \degree C \le T_A \le +60 \degree C$

TÜV TUN 09.0001X

Ex db I Mb Ex nAc IIC T4 Gc Ex tc IIIC T135°C Dc

Permissible operation temperature: $0 \text{ }^\circ\text{C} \leq T_A \leq +60 \text{ }^\circ\text{C}$

The following ship approvals are pending for 750-881 fieldbus coupler/controller:

GL (Germanischer Lloyd)

Information

Cat. A, B, C, D (EMC 1)

For more information about the ship approvals:

Note the "Supplementary Power Supply Regulations" chapter for the ship approvals.

4.7 Standards and Guidelines

750-881 meets the following requirements on emission and immunity of interference:

EMC CE-Immunity to interference	acc. to EN 61000-6-2: 2005
EMC CE-Emission of interference	acc. to EN 61000-6-3: 2007
EMC marine applications-Immunity to interference	acc. to Germanischer Lloyd (2003)
EMC marine applications-Emission of interference	acc. to Germanischer Lloyd (2003)

5 Assembly

5.1 Installation Position

Along with horizontal and vertical installation, all other installation positions are allowed.

Note

Use an end stop in the case of vertical assembly!

In the case of vertical assembly, an end stop has to be mounted as an additional safeguard against slipping. WAGO order no. 249-116 End stop for DIN 35 rail, 6 mm wide

WAGO order no. 249-117 End stop for DIN 35 rail, 10 mm wide

5.2 Total Extension

The length of the module assembly (including one end module of 12mm width) that can be connected to the 750-881 is 780 mm. When assembled, the I/O modules have a maximum length of 768 mm.

Examples:

- 64 I/O modules of 12 mm width can be connected to one coupler/controller.
- 32 I/O modules of 24 mm width can be connected to one coupler/controller.

Exception:

The number of connected I/O modules also depends on which type of coupler/controller is used. For example, the maximum number of I/O modules that can be connected to a PROFIBUS coupler/controller is 63 without end module.

NOTICE

Observe maximum total length of a node!

The maximum total length of a node without a coupler/controller must not exceed 780 mm. Furthermore, you must observe restrictions made on certain types of couplers/controllers.

Note

Increase total length using a WAGO internal data bus extension module!

Using an internal data bus extension module from WAGO, you can increase the total length of the fieldbus node. In this type of configuration, you must connect a 750-627 Bus Extension End Module to the last module of the node.

You then connect the 750-627 module to the 750-628 Coupler Module of the next I/O module assembly via RJ-45 cable.

You can connect up to 10 internal data bus extension coupler modules 750-628 to an internal data bus extension end module 750-627. In this manner, you can logically connect up to 10 module assemblies to a 750-881, dividing a fieldbus node into 11 assemblies maximum.

The maximum cable length between two assemblies is 5 meters. For additional information, refer to the "750-627/-628 Modules" manual. The total cable length for a fieldbus node is 70 meters.

5.3 Assembly onto Carrier Rail

5.3.1 Carrier Rail Properties

All system components can be snapped directly onto a carrier rail in accordance with the European standard EN 50022 (DIN 35).

NOTICE

Do not use any third-party carrier rails without approval by WAGO! WAGO Kontakttechnik GmbH & Co. KG supplies standardized carrier rails that are optimal for use with the I/O system. If other carrier rails are used, then a technical inspection and approval of the rail by WAGO Kontakttechnik GmbH & Co. KG should take place.

Carrier rails have different mechanical and electrical properties. For the optimal system setup on a carrier rail, certain guidelines must be observed:

- The material must be non-corrosive.
- Most components have a contact to the carrier rail to ground electromagnetic disturbances. In order to avoid corrosion, this tin-plated carrier rail contact must not form a galvanic cell with the material of the carrier rail which generates a differential voltage above 0.5 V (saline solution of 0.3 % at 20°C).
- The carrier rail must optimally support the EMC measures integrated into the system and the shielding of the bus module connections.
- A sufficiently stable carrier rail should be selected and, if necessary, several mounting points (every 20 cm) should be used in order to prevent bending and twisting (torsion).
- The geometry of the carrier rail must not be altered in order to secure the safe hold of the components. In particular, when shortening or mounting the carrier rail, it must not be crushed or bent.
- The base of the I/O components extends into the profile of the carrier rail. For carrier rails with a height of 7.5 mm, mounting points are to be riveted under the node in the carrier rail (slotted head captive screws or blind rivets).
- The medal springs on the bottom of the housing must have low-impedance contact with the DIN rail (wide contact surface is possible).

5.3.2 WAGO DIN Rail

WAGO carrier rails meet the electrical and mechanical requirements shown in the table below.

Order number	Description	
210-113 /-112	35 x 7,5; 1 mm; steel yellow chromated; slotted/unslotted	
210-114 /-197	35 x 15; 1,5 mm; steel yellow chromated; slotted/unslotted	
210-118	35 x 15; 2,3 mm; steel yellow chromated; unslotted	
210-198	35 x 15; 2,3 mm; copper; unslotted	
210-196	35 x 7,5; 1 mm; aluminum; unslotted	

5.4 Spacing

The spacing between adjacent components, cable conduits, casing and frame sides must be maintained for the complete fieldbus node.

Figure 28: Spacing

The spacing creates room for heat transfer, installation or wiring. The spacing to cable conduits also prevents conducted electromagnetic interferences from influencing the operation.

5.5 Assembly Sequence

All system components can be snapped directly on a carrier rail in accordance with the European standard EN 50022 (DIN 35).

The reliable positioning and connection is made using a tongue and groove system. Due to the automatic locking, the individual components are securely seated on the rail after installation.

Starting with the coupler/controller, the bus modules are assembled adjacent to each other according to the project design. Errors in the design of the node in terms of the potential groups (connection via the power contacts) are recognized, as the bus modules with power contacts (male contacts) cannot be linked to bus modules with fewer power contacts.

Risk of injury due to sharp-edged male contacts! The male contacts are sharp-edged. Handle the module carefully to prevent injury.

NOTICE

Connect the I/O modules in the required order!

Never plug bus modules from the direction of the end terminal. A ground wire power contact, which is inserted into a terminal without contacts, e.g. a 4-channel digital input module, has a decreased air and creepage distance to the neighboring contact in the example DI4.

NOTICE

Assemble the I/O modules in rows only if the grooves are open!

Please take into consideration that some bus modules have no or only a few power jumper contacts. The design of some modules does not allow them to be physically assembled in rows, as the grooves for the male contacts are closed at the top.

Note

Don't forget the bus end module!

Always plug a bus end module 750-600 onto the end of the fieldbus node! You must always use a bus end module at all fieldbus nodes with the WAGO I/O System 750 fieldbus couplers/controllers to guarantee proper data transfer.

5.6 Inserting and Removing Devices

A DANGER

Use caution when interrupting the PE!

Make sure that people or equipment are not placed at risk when removing an I/O module and the associated PE interruption. To prevent interruptions, provide ring feeding of the ground conductor, see section "Grounding/Ground Conductor" in manual "System Description WAGO-I/O-SYSTEM 750".

NOTICE

Perform work on devices only if the system is de-energized!

Working on devices when the system is energized can damage the devices. Therefore, turn off the power supply before working on the devices.

5.6.1 Inserting the Fieldbus Coupler/Controller

- 1. When replacing the fieldbus coupler/controller for an already available fieldbus coupler/controller, position the new fieldbus coupler/controller so that the tongue and groove joints to the subsequent I/O module are engaged.
- 2. Snap the fieldbus coupler/controller onto the carrier rail.
- 3. Use a screwdriver blade to turn the locking disc until the nose of the locking disc engages behind the carrier rail (see the following figure). This prevents the fieldbus coupler/controller from canting on the carrier rail.

With the fieldbus coupler/controller snapped in place, the electrical connections for the data contacts and power contacts (if any) to the possible subsequent I/O module are established.

Figure 29: Unlocking lug of extended ECO coupler

5.6.2 Removing the Fieldbus Coupler/Controller

- 1. Use a screwdriver blade to turn the locking disc until the nose of the locking disc no longer engages behind the carrier rail.
- 2. Remove the fieldbus coupler/controller from the assembly by pulling the release tab.

Electrical connections for data or power contacts to adjacent I/O modules are disconnected when removing the fieldbus coupler/controller.

5.6.3 Inserting I/O Module

1. Position the I/O module so that the tongue and groove joints to the fieldbus coupler/controller or to the previous or possibly subsequent I/O module are engaged.

Figure 30: Insert I/O module

2. Press the I/O module into the assembly until the I/O module snaps into the carrier rail.

Figure 31: Snap the I/O module into place

With the I/O module snapped in place, the electrical connections for the data contacts and power contacts (if any) to the fieldbus coupler/controller or to the previous or possibly subsequent I/O module are established.

5.6.4 Removing the I/O Module

1. Remove the I/O module from the assembly by pulling the release tab.

Figure 32: Removing the I/O module

Electrical connections for data or power contacts are disconnected when removing the I/O module.

6 Connect Devices

6.1 Data Contacts/Internal Bus

Communication between the coupler/controller and the bus modules as well as the system supply of the bus modules is carried out via the internal bus. It is comprised of 6 data contacts, which are available as self-cleaning gold spring contacts.

Figure 33: Data contacts

NOTICE

Do not place the I/O modules on the gold spring contacts!

Do not place the I/O modules on the gold spring contacts in order to avoid soiling or scratching!

NOTICE

Ensure that the environment is well grounded!

The modules are equipped with electronic components that may be destroyed by electrostatic discharge. When handling the modules, ensure that the environment (persons, workplace and packing) is well grounded. Avoid touching conductive components, e.g. data contacts.

6.2 Power Contacts/Field Supply

Risk of injury due to sharp-edged male contacts!

The male contacts are sharp-edged. Handle the module carefully to prevent injury.

Self-cleaning power jumper contacts used to supply the field side are located on the right side of both couplers/controllers and some of the I/O modules. These contacts come as touch-proof spring contacts. As fitting counterparts the I/O modules have male contacts on the left side.

Figure 34: Example for the arrangement of power contacts

Note

Field bus node configuration and test via smartDESIGNER

With the WAGO ProServe[®] Software smartDESIGNER, you can configure the structure of a field bus node. You can test the configuration via the integrated accuracy check.

6.3 Connecting a conductor to the CAGE CLAMP[®]

The WAGO CAGE CLAMP[®] connection is appropriate for solid, stranded and finely stranded conductors.

Note

Only connect one conductor to each CAGE CLAMP[®] connection! Only one conductor may be connected to each CAGE CLAMP[®] connection. Do not connect more than one conductor at one single connection!

If more than one conductor must be routed to one connection, these must be connected in an up-circuit wiring assembly, for example using WAGO feed-through terminals.

Exception:

If it is unavoidable to jointly connect 2 conductors, then you must use a ferrule to join the wires together. The following ferrules can be used:

Length	8 mm
Nominal cross section max.	1 mm^2 for 2 conductors with 0.5 mm ² each
WAGO Product	216-103 or products with comparable properties.

- 1. To open the CAGE CLAMP[®] insert the actuating tool into the opening above the connection.
- 2. Insert the conductor into the corresponding connection opening.
- 3. To close the CAGE CLAMP[®] simply remove the tool the conductor is then clamped firmly in place.

Figure 35: Connecting a conductor to a CAGE CLAMP®

7 Function Description

7.1 Operating System

7.1.1 Run-up

Note

The mode selector switch may not be located in the lower position! The mode selector switch may not be set at the bottom position during run-up!

The controller begins running up after switching on the power supply or after a reset. The internal PFC program is then transferred to the RAM.

During the initialization phase, the fieldbus controller detects the I/O modules and the current configuration and sets the variables to 0 or FALSE, or to an initial value specified by the PFC program. The flags retain their status. During this phase the I/O LED will flash red.

When run-up is successful, the I/O LED then stays lit continuously in green.

7.1.2 PFC Cycle

After error-free run-up, the PFC cycle starts with the mode selector switch at the top position, or on a Start command from WAGO-I/O-*PRO*. The input and output data for the field bus, I/O modules and the timer values are read. The PFC program contained in the RAM is then processed, after which the output data for the field bus and I/O modules is written to the process image. At the end of the PFC cycle, the operating system functions are executed for diagnostics and communication (among other things) and the timer values are updated. The new cycle begins by reading in of the input and output data and the timer values.

The operating mode is changed ("STOP"/"RUN") at the end of a PFC cycle.

The cycle time is the time from the beginning of the PFC program up to the next beginning of the cycle. If a loop is programmed within the PFC program, the PFC runtime and the PFC cycle time will be extended accordingly.

The inputs, outputs and timer values are not updated while the PFC program is being processed. Updating is performed only as defined at the end of the PFC program. As a result, it is not possible to wait on an event from the process or a set period to expire while a loop is in progress.

Figure 36: Run-up of the Controller

7.2 Process Data Architecture

7.2.1 Basic Structure

After switching on, the controller identifies all I/O modules connected with the node that send or receive data (data width/bit width > 0). A node can consist of a mixed arrangement of analog and digital modules.

Note

Up to 250 I/O modules can be connected with the data bus extension modules.

Using the WAGO module bus extension coupler module 750-628 and end module 750-627 makes it possible to connect up to 250 modules to the Programmable Fieldbus Controller ETHERNET.

Information

Additional Information

For the number of input and output bits or bytes for the individual I/O modules, refer to the corresponding description of the I/O modules.

The controller creates an internal local process image on the basis of the data width, the type of I/O module and the position of the module in the node. This process image is broken down into an input and an output data range.

The data of the digital I/O modules is bit-oriented; i.e., digital data is sent bit by bit. Analog I/O modules represent the group of byte-oriented modules – data is sent byte by byte.

This group includes: counter modules, angle and distance measurement modules and communication modules.

For both the local input and the output process image, the I/O module data is stored in the corresponding process image according to the order in which the modules are connected to the controller.

Note

Hardware changes can result in changes of the process image!

If the hardware configuration is changed by adding, changing or removing of I/O modules with a data width > 0 bit, this result in a new process image structure. The process data addresses would then change. If adding modules, the process data of all previous modules has to be taken into account.

A memory range of 256 words (word 0...255) is initially available in the controller for the process image of the physical input and output data.

For the image of the MODBUS/PFC variables, the memory range of words 256...511 is reserved; meaning the image for the MODBUS/PFC variables is created behind the process image for the I/O module data.

If the quantity of module data is greater than 256 words, all the physical input and output data above this value is added to the end of the current process image in a memory range; i.e., attached behind the MODBUS/PFC variables (word 512...1275).

The Ethernet/IP PFC variables are then mapped behind the remaining physical I/O module data. This memory range includes words 1276 ... 1531.

The subsequent range, starting from word 1532, is reserved for future protocol expansion and other PFC variables.

Access by the PLC to process data is made independently from the fieldbus system in all WAGO fieldbus controllers; access is always conducted through an application-related IEC-61131-3 program.

How the data is accessed from the fieldbus side depends on the fieldbus however.

For the fieldbus controller, a MODBUS/TCP master can access the data via implemented MODBUS functions, whereby decimal or hexadecimal MODBUS addresses are used.

Optionally, data can also be accessed via Ethernet/IP using an object model.

Information

Additional Information:

For a detailed description of these fieldbus-specific data access methods, refer to the section "MODBUS Functions" or the section "Ethernet/IP (Ethernet/Industrial Protocol)".

Information

Additional Information:

For the fieldbus-specific process image of any WAGO I/O module, please refer to the section "Structure of the process data".

7.2.2 Example of an Input Process Image

The following figure is an example of an input process image. The configuration comprises 16 digital and 8 analog inputs. The input process image thus has a data length of 8 words for the analog modules and 1 word for the digital modules; i.e., 9 words in total.

Figure 37: Example of process image for input data

7.2.3 Example of an Output Data Process Image

The following example for the output process image comprises 2 digital and 4 analog outputs. It comprises 4 words for the analog outputs and 1 word for the digital outputs; i.e., 5 words in total.

In addition, the output data can also be read back with an offset of 200_{hex} (0x0200) added to the MODBUS address.

Note

Data > 256 words can be read back by using the cumulative offset!

All output data greater than 256 words and, therefore located in the memory range 6000_{hex} (0x6000) to 66F9 _{hex} (0x66F9) can be read back with an offset of 1000 _{hex} (0x1000) added to the MODBUS address.

Figure 38: Example of process image for output data

7.2.4 Process Data MODBUS/TCP and EtherNet/IP

For some I/O modules (and their variations), the structure of the process data depends on the fieldbus.

For the fieldbus controller with MODBUS and Ethernet/IP, the process image is built up word-by-word (with word alignment). The internal mapping method for data greater than one byte conforms to Intel formats.

Information

Additional Information:

For the respective fieldbus-specific structure of the process values of any I/O module within the 750 or 753 Series of the WAGO-I/O-SYSTEM, refer to Section "Structure of Process Data for MODBUS/TCP" or "Structure of Process Data for Ethernet/IP".

7.3 Data Exchange

With the fieldbus controller, data is exchanged via the MODBUS/TCP protocol and/or the MODBUS/UDP protocol or Ethernet/IP.

MODBUS/TCP works according to the master/slave principle. The master controller can be a PC or a PLC.

The fieldbus controllers of the WAGO-I/O-SYSTEM 750 are usually slave devices. Thanks to the programming with IEC 61131-3, however, these controllers can also assume the master function.

The master requests communication. This request can be directed to certain nodes by addressing. The nodes receive the request and, depending on the request type, send a reply to the master.

A controller can set up a defined number of simultaneous connections (socket connections) to other network subscribers:

- 3 connections for HTTP (to read HTML pages from the controller)
- 15 connections via MODBUS/TCP (to read or write input and output data of the controller)
- 128 connections for Ethernet/IP
- 5 connections via PFC (available in the PLC function for IEC 61131-3 application programs)
- 2 connections for WAGO-I/O-*PRO* (these connections are reserved for debugging the application program via ETHERNET. WAGO-I/O-*PRO* needs 2 connections at the same time for the debugging. However, only **one** programming tool can have access to the controller).
- 10 connections for FTP
- 2 connections for SNMP

The maximum number of simultaneous connections can not be exceeded. Existing connections must first be terminated before new ones can be set up. The Programmable Fieldbus Controller ETHERNET is essentially equipped with three interfaces for data exchange:

- the interface to the fieldbus (Master),
- the PLC function of the PFC (CPU) and
- the interface to the I/O modules.

Data exchange takes place between the fieldbus master and the I/O modules, between the PLC function of the PFC (CPU) and the I/O modules and between the fieldbus master and the PLC function of the PFC (CPU).

If MODBUS is used as the fieldbus, the MODBUS master accesses the date using the MODBUS functions implemented in the controller; Ethernet/IP, in contrast, uses an object model for data access.

Data access is carried out with the aid of an IEC-61131-3 application program. Data addressing varies greatly here.

7.3.1 Memory Areas

Figure 39: Memory areas and data exchange

The controller process image contains the physical data for the bus modules. These have a value of $0 \dots 255$ and word $512 \dots 1275$.

- ① The input module data can be read by the CPU and by the fieldbus side.
- ⁽²⁾ Likewise, data can be written to the output modules from the CPU and the fieldbus side.

The MODBUS PFC variables are stored in each of the memory areas for word 256 ... 511 between these sides.

- ③ The MODBUS-PFC input variables are written to the input memory area from the fieldbus side and read in by the CPU for processing.
- The variables processed by the CPU using the IEC-61131-3 program are places in the output memory area, where they can be read out by the master.

The memory area for word 1276 ... 1531 for the Ethernet/IP PFC variables is adjacent to the physical I/O module data.

The subsequent memory area, starting from word 1532, is reserved for future protocol expansion and other PFC variables.

In addition, all output data is mirrored in the Programmable Fieldbus Controller ETHERNET to a memory area with the address offset 0x0200 and 0x1000. This allows output values to be read back in by adding 0x0200 or 0x1000 to the MODBUS address.

Other memory areas are also provided in the controller, some of which cannot be accessed by the fieldbus side, however:

• Data memory (1024 kByte)

The data memory is a volatile RAM memory for creating variables that are not required for communication with the interfaces, but rather for internal processing procedures, such as calculation of results.

• Program memory (1024 kByte)

The IEC-61131-3 program is stored in the program memory. The code memory is a Flash ROM. When power is switched on, the program is transferred from the flash to the RAM memory. After error-free run-up, the PFC cycle starts with the mode selector switch at the top position, or on the Start command from the WAGO-I/O-PRO.

• NOVRAM Remanent memory (32 kByte)

The remanent memory is a non-volatile memory; i.e., all values of flags and variables, that are explicitly defined by "var retain", are retained even after a loss of power. Memory management is performed automatically. The 32 kByte memory area is normally divided into an 16 kByte addressable range for flags (%MW0 ... %MW 8191) and a 16 kByte retain area for variables without memory area addressing, that are defined by "var retain".

Note

Markers are only remanent under "var retain"!

Please note that the bit memory is only retentive if you have declared it as such under "var retain".

Figure 40: Example declaration of remanent flags by "var retain"

This breakdown can be varied (see following explanation).

Note

NOVRAM memory allocation can be changed in WAGO-I/O-PRO!

The breakdown of the NOVRAM can be modified when required in the programming software WAGO-I/O-*PRO*/Register "Resources"/Dialog window "Target system settings".

The start address for the flag area is fixed. The area sizes and the start address for the retain memory can be varied.

We do recommend keeping the standard settings, however, in order to avoid any overlapping of the areas.

In these default settings the size of the flag area is set at 16#4000, followed by the retain memory, with the size 16#4000

7.3.2 Addressing

Module inputs and outputs in a controller are addressed internally as soon as hey are started. The order in which the connected modules are addressed depends on the type of module that is connected (input module, output module). The process image is formed from these addresses.

The physical arrangement of the I/O modules in the fieldbus node is arbitrary.

Note

Use various options for addressing the bus terminals!

Connected modules in more detail. It is essential that you understand these correlations in order to conduct conventional addressing by counting. The **WAGO I/O Configurator** is also available as a further addressing option. The Configurator can assist you in addressing and protocol assignment for the connected modules. You must select the connected modules in the I/O Configurator; the software then takes care of correct addressing (see following Figure).

Figure 41: WAGO I/O Configurator

The I/O Configurator is started from the WAGO-I/O-*PRO*. For more details, refer to Section "Configuration using the WAGO-I/O-*PRO* I/O Configurator".

7.3.2.1 Addressing of I/O Modules

Addressing first references complex modules (modules that occupy several bytes) in accordance with their physical order downstream of the fieldbus coupler/controller; i.e., they occupy addresses starting from word 0.

Following these is the data for the remaining modules, compiled in bytes (modules that occupy less than one byte). In this process, byte by byte is filled with this data in the physical order. As soon a complete byte is occupied by the bit oriented modules, the process begins automatically with the next byte.

Note

Hardware changes can result in changes of the process image!

I f the hardware configuration is changed and/or expanded; this may result in a new process image structure. In this case, the process data addresses also change. If adding modules, the process data of all previous modules has to be taken into account.

Note

Observe process data quantity!

For the number of input and output bits or bytes of the individual IO modules please refer to the corresponding description of the IO modules.

|--|

Data width ≥ 1 word (channel)	Data width = 1 bit (channel)
Analog input modules	Digital input modules
Analog output modules	Digital output modules
Input modules for thermocouples	Digital output modules with diagnostics (2 bits/channel)
Input modules for resistor sensors	Supply modules with fuse carrier/diagnostics
Pulse width output modules	Solid-state load relays
Interface modules	Relay output modules
Up/down counters	
I/O modules for angle and distance	
measurement	

7.3.2.2 Address Ranges

Subdivision of the address ranges for word-by-word addressing in accordance with IEC-61131-3:

Table 27: Breakdown of address range

Word	Data
0-255	Physical I/O modules
256-511	MODBUS PFC variables
512-1275	Other physical I/O modules
1276-1531	Ethernet/IP PFC variables
1532	Reserved for PFC variables with future protocols

Word 0...255: First address range for I/O module data:

Table 28:	Address range	Word 0255	

Data width	Address								
Bit	0.0 0.7	0.8 0.15	1.0 1.7	1.8 1.15		254.0 254.7	254.8 254.15	255.0 255.7	255.8 255.15
Byte	0	1	2	3		508	509	510	511
Word	0 1				254	254 255			
DWord	0					127			

Word 256...511: Address range for MODBUS-PFC variables:

Data width	Address								
	2560	2568	257.0	257.8		510.0	510.8	511.0	511.8
Bit	 256.7	 256.15	 257.7	 257.15		 510.7	 510.15	 511.7	 511.15
Byte	512	513	514	515		1020	1021	1022	1023
Word	256 257				510	510 511			
DWord	128					255			

Word 512...1275: Second address range for I/O module data:

Data width	Addres	Address							
	512.0	512.8	513.0	513.8		1274.0	1274.8	1275.0	1275.8
Bit	 512.7	 512.15	 513.7	 513.15		 1274.7	 1274.15	 1275.7	 1275.15
Byte	1024	1025	1026	1027		2548	2549	2550	2551
Word	512 513				1274	1274 1275			
DWord	256					637			

Table 30: Address range, word 512 - 1275

Word 1276-1531: Address range for Ethernet/IP fieldbus data:

Table 31: Address range, word 1276...1531

Data width	Address								
Bit	1276.0. 1276.7	1276.8. 1276.15	1277.0. 1277.7	1277.8. 1277.15		1530.0153 0.7	1530.8153 0.15	1531.0153 1.7	1531.8153 1.15
Byte	2552	2553	2554	2555		3060	3061	3062	3063
Word	1276 1277				1530 1531				
DWord	638					765			

Address range for flags:

Table 32: Address range for flags

Data	Addres	Address								
width										
	0.0	0.8	1.0	1.8		12287.0	12287.8	12288.0	12288.8	
Bit	 0.7	 0.15	 1.7	 1.15		 12287.7	 12287.15	 12288.7	 12288.15	
Byte	0	1	2	3		24572	24573	24574	24575	
Word	0 1				12287 12288					
DWord	0					6144				

IEC-61131-3 Overview of Address Areas:

Address area	MODBUS	PLC	Description
	Access	Access	The second se
phys. inputs	read	read	Physical inputs (%IW0%IW255 und %IW512%IW1275)
phys. outputs	read/write	read/write	Physical outputs (%QW0%QW255 und %QW512%QW1275)
MODBUS/TCP PFC-IN variables	read/write	read	Volatile PLC input variables (%IW256%IW511)
MODBUS/TCP PFC-OUT variables	read	read/write	Volatile PLC output variables (%QW256%QW511)
Ethernet/IP PFC-IN variables	-	read	Volatile PLC input variables (%IW1276 %IW1531)
Ethernet/IP PFC-OUT variables	-	read/write	Volatile PLC output variables (%QW1276 %QW1531)
Configuration register	read/write	-	see Section "MODBUS Functions → MODBUS Registers → Configuration Registers"
Firmware register	read	-	see Section "MODBUS Functions → MODBUS Registers → Firmware Information Registers"
Retain variables	read/write	read/write	Remanent memory (%MW0%MW8192)

7.3.2.3 Absolute Addressing

Direct presentation of individual memory cells (absolute addresses) based on IEC-61131-3 is performed using character strings:

Position	Prefix	Designation	Comment
1	%	Introduces an absolute address	
2	Ι	Input	
	Q	Output	
	М	Flag	
3	X*	Single bit	Data width
	В	Byte (8 bits)	
	W	Word (16 bits)	
	D	Doubleword (32 bits)	
4		Address	

1 auto 54. Ausolute Audressing

such as word-by-word: %QW27 (28th word), bit-by-bit: %IX1.9 (10th bit in the 2nd word)

* The designator "X" for bits can be omitted

Note

Enter character strings without spaces or special characters!

The character strings for absolute addresses must be entered connected, i.e. without spaces or special characters!

Addressing example:

Table 35: Addressing example

	Inputs									
Bit	%IX14	.0 15	%IX15.0 15							
Byte	%IB28	%IB29	%IB30	%IB31						
Word	%Г	W14	%IW15							
Double word	%ID7									

	Outputs									
Bit	%QX5	.0 15	%QX6.0 15							
Byte	%QB10	%QB11	%QB12	%QB13						
Word	%0	QW5	%QW6							
Double word	%QD2 (to	op section)	%QD3 (bottom section)							

	Flags				
Bit	%MX1	1.0 15	%MX12	2.0 15	
Byte	%MB22 %MB23		%MB24	%MB25	
Word	%N	W11	%MW12		
Double word	%MD5 (te	op section)	%MD6 (bottom section)		

Calculating addresses (as a function of the word address):

Bit address: Byte address:	Word address .0 to .15 1^{st} byte: 2 x word address 2^{nd} byte: 2 x word address + 1
DWord address:	Word address (even number) / 2 or Word address (uneven number) / 2, rounded down

7.3.3 Data Exchange between MODBUS/TCP Master and I/O Modules

Data exchange between the MODBUS/TCP Master and the I/O modules is conducted using the MODBUS functions implemented in the controller by means of bit-by-bit or word-by-word reading and writing routines.

There are 4 different types of process data in the controller:

- Input words
- Output words
- Input bits
- Output bits

Access by word to the digital I/O modules is carried out in accordance with the following table:

 Table 36: Allocation of digital inputs and outputs to process data words in accordance with the Intel format

Digital inputs/ outputs	16.	15.	14.	13.	12.	11.	10.	9.	8.	7.	6.	5.	4.	3.	2.	1.
Process data	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Byte	High byte D1								L	ow b	yte D	0				

Output can be read back in by adding an offset of 200_{hex} (0x0200) to the MODBUS address.

Note

Data > 256 words can be read back by using the cumulative offset! All output data greater than 256 words and, therefore located in the memory range 0x6000 to 0x62FC, can be read back by adding an offset of 1000_{hex} (0x1000) to the MODBUS address.

Register functions start at address 0x1000. These functions can be addressed in a similar manner with the MODBUS function codes that are implemented (read/write).

The specific register address is then specified instead of the address for a module channel.

Information

Additional Information

A detailed description of the MODBUS addressing may be found in Chapter "MODBUS Register Mapping".

7.3.3.1 Data Exchange between EtherNet/IP Master and I/O Modules

The data exchange between Ethernet/IP master and the I/O modules is objectoriented. Each node on the network is depicted as a collection of objects.

The "assembly" object specifies the structure of the objects for the data transmission. With the assembly object, data (e.g. I/O data) can be combined into blocks (mapped) and sent via a single message connection. Thanks to this mapping, less access to the network is necessary.

There is a distinction between input and output assemblies.

An input assembly reads in data from the application via the network or produces data on the network.

An output assembly writes data to the application or consumes data from the network.

In the fieldbus coupler/controller, various assembly instances are already preprogrammed (static assembly).

After the input voltage is applied, the assembly object combines data from the process image. As soon as a connection is established, the master can address the data with "class", "instance", and "attribute" and access it or read and write using I/O connections.

The mapping of the data depends on the assembly instance of the static assembly selected.

Information

Additional Information:

The assembly instances for the static assembly are described in the section "Ethernet/IP".

7.3.4 Data Exchange between PLC Function (CPU) and I/O Modules

The PLC function (CPU) of the PFC uses direct addresses to access the I/O module data.

The PFC uses absolute addresses to reference the input data. The data can then be processed internally in the controller using the IEC-61131-3 program. Flags are stored in a non-volatile memory area in this process. The results of linking can then be written directly to the output data employing absolute addressing.

Figure 43: Data exchange between PLC function (CPU) of the PFC and the I/O modules

7.3.5 Data Exchange between Master and PLC Function (CPU)

The fieldbus master and the PLC function (CPU) of the PFC have different perspectives on data.

Variable data generated by the master are routed as input variables to the PFC, where they are further processed.

Data created in the PFC are transmitted via fieldbus to the master as output variables.

In the PFC, access to the MODBUS/TCP PFC variable data is possible starting from word address 256 to 511 (double-word address 128-255, byte address 512-1023), while access to the PFC variable data is possible starting from a word address of 1276 to 1531 (double-word address 638-765, byte address 2552-3063).

7.3.5.1 Example of MODBUS/TCP Master and PLC Function (CPU)

Data access by the MODBUS/TCP Master

Access to data by the MODBUS Master is always either by word or by bit. Addressing of the first 256 data words by the I/O modules begins with word-by-word and bit-by-bit access at 0.

Addressing of the data by the variables begins at 256 for word-based access; bit-by-bit access then takes place starting at:

4096 for bit 0 in word 256 4097 for bit 1 in word 256

8191 for bit 15 in word 511.

The bit number can be determined using the following equation:

Bit No. = (word * 16) + Bit No. in word Example: 4097 = (256 * 16) + 1

Data Access by PLC Function (CPU)

The PLC function of the PFC employs a different type of addressing for accessing the same data. PLC addressing is identical with word-by-word addressing by the MODBUS Master for the declaration of 16-bit variables. However, a different notation is used for declaration of Boolean variables (1 bit) than that used by MODBUS. Here, the bit address is composed of the elements word address and bit number in the word, separated by a decimal point.

Example:

Bit access by MODBUS to bit number 4097 => Bit addressing in the PLC <Word No.>.<Bit No.> = 256.1

The PLC function of the PFC can also access data by bytes and by doubleword access.

Addresses are calculated based on the following equations for byte-based access:

High Byte address = Word address*2 Low Byte address = (Word address*2) + 1

Addresses are calculated according to the following equation for double-word based access:

Double-word address = High word address/2 (rounded down) or = Low word address/2

Information

Additional Information

There is a detailed description of the MODBUS and the corresponding IEC 61131 addressing in section "MODBUS Register Mapping".

7.3.6 Application Example

Figure 44: Example of addressing for a fieldbus node

8 Commissioning

This chapter shows a step-by-step procedure for starting up exemplarily a WAGO fieldbus node.

Note

Good example!

This description is just an example and only serves to describe the procedure for a local start-up of a single fieldbus node with a non-networked computer under Windows.

Two work steps are required for start-up. The description of these work steps can be found in the corresponding following sections.

- Connecting client PC and fieldbus nodes
- Assigning the IP address to the fieldbus node

Note

The IP address must occur in the network only once!

For error-free network communication, note that the assigned IP address must occur only once in the network!

In the event of an error, the error message "IP address configuration error" (error code 6 - error argument 6) is indicated by 'I/O' LED at the next power-on.

There are various ways to assign the IP address. The various options are described in the following sections individually.

Following the commissioning descriptions after which the fieldbus node is ready for communication, the following topics are described:

- Preparing the Flash File System
- Synchronizing the real-time clock
- Restoring factory settings

After the topics specified above, you can find instructions for programming the fieldbus controller with WAGO-I/O-*PRO* and the description of the internal web pages of the web-based Management System (WBM) for additional settings of the fieldbus controller.

8.1 Connecting Client PC and Fieldbus Nodes

- 1. Mount the fieldbus to the carrier rail. Observe the installation instructions described in "Assembly" section.
- 2. Connect the 24V power supply to the supply module.
- 3. Connect an Ethernet interface from the client PC to an Ethernet interface of the fieldbus controller
- 4. Turn the operating voltage on. Make sure that the mode selector is not in the bottom position.

After the power is switched on, the controller is initialized. The fieldbus controller determines the I/O module configuration and creates a process image. During startup, the I/O LED (red) will flash. After a brief period, the I/O LED lights up green, indicating that the fieldbus controller is operational.

If an error has occurred during startup, a fault code is flashed on the I/O LED. If the I/O LED flashes 6 times (indicating error code 6) and then 4 times (indicating error argument 4), an IP address has not been assigned yet.

8.2 Allocating the IP Address to the Fieldbus Node

- Use address selection switch (DIP switch) to assign IP address (manually).
- Automatic assignment of addresses via DHCP
- Assigning IP Address via BootP server

8.2.1 Assigning IP Address via Address Selection Switch

Use the address selection switch to set the host ID, i.e., the last byte of the IP address, which is entered in the Web-Based Management System on WBM page "**TCP/IP**", entry "**DIP switch IP-Adress**", with values between 1 and 254 binary coded.

Example:

DIP switch IP address:192.168.7Set DIP switch value:50 (binary coded: 00110010)

Resulting IP address saved in the fieldbus controller: 192.168.7.50

Note

Host ID 1 - 254 via address selection switch freely adjustable!

Use the address selection switch to set the last byte of the IP address to a value between 1 and 254. The DIP switch is then enabled and the IP address is composed of the DIP switch base address stored in the fieldbus controller and the host ID set on the DIP switch.

The IP address make via the Web-based Management is disabled.

Note

Address selection switch values 0 and 255 are predefined, address selection switch disabled!

If you use the address selection switch to set the value 0 or 255, the address selection switch is disabled and the setting configured in the fieldbus controller is used.

With the value 0, the settings of the Web based Management System apply. If you set the value 255, the configuration via DHCP is activated.

The base address used consists of the first three bytes of the IP address. This always depends on the DIP switch IP address currently saved in the fieldbus controller.

If there are still no static IP address in the fieldbus controller, the default value **192.168.1** defined by the firmware as the base address is used when setting the DIP switch to 1 - 254.

The address selection switch setting then overwrites the value of the host ID.

Information

More information about changing the static base address

You can also change the base address currently saved in the fieldbus controller as required.

Either proceed as described in the following section "Assigning IP Address via Web Server".

- To configure the IP address via the address selection switch by setting the host ID (last position of the IP address) to a value that does not equal 0/255, first convert the host ID to the binary representation. For example, host ID 50 results in a binary code of 00110010.
- 2. Set the bits in sequence using the 8 address switches. Start with address switch 1 to set bit 0 (LSB) and end with address switch 8 for bit 7 (MSB).

Figure 45: Address selection switch

3. Restart the fieldbus coupler after adjusting the address selection switch to apply the configuration changes.

8.2.2 Assigning IP Address via DHCP

If you want to use DHCP to assign the IP address, it happens automatically via a DHCP server on the network.

Note

Total network failure when there are two DHCP servers in the network! To prevent network failure, never connect a PC, on which a DHCP server is installed, to a global network. In larger networks, there is usually a DHCP server already that can cause collisions and subsequent network failure.

Note

There must be a DHCP server in the network for further configuration! Install a DHCP server on your client PC in the local network if not already available. You can download a DHCP server free of charge on the Internet, e.g., http://windowspedia.de/dhcp-server download/.

Note

Assign the client PC a fixed IP address and note common subnet! Note that the client PC, on which the DHCP server is listed, must have a fixed IP address and that the fieldbus node and client PC must be in the same subnet.

The following steps are included:

- Enable DHCP
- Disable DHCP

8.2.2.1 Enable DHCP

Note

Set the address selection switch to 255 for active software configuration! Set the address selection switch to 255 to disable the DIP switch and to enable DHCP.

Restart the fieldbus node after adjusting the address selection switch to apply the configuration changes.

8.2.2.2 Disabling DHCP

Note

BootP must be disabled to assign the address permanently!

To apply the new IP address permanently in the fieldbus controller, BootP must be disabled.

This prevents the fieldbus coupler from receiving a new BootP request.

You can disable DHCP in two ways:

- Disable DHCP via the address selection switch.
- Disable DHCP in the Web-based Management System.

Disable DHCP via the address selection switch.

Note

Do not set the address selection switch to 0/255 again!

Do not switch the address selection switch to 0/255 again because doing so automatically disables the DIP switch and enables IP address assignment via the software configuration.

- Use the address selection switch to set a value between 1 ... 254 and the DIP switch IP address saved in the fieldbus controller (with changed Host ID = DIP switch) is then valid.
 (Example: If the DIP switch IP address 10.127.3 was saved in the fieldbus controller and you set the switch to 50 (binary coded 00110010), for example, the fieldbus controller then has the address 10.127.3.50.)
- 2. Restart the fieldbus coupler after adjusting the address selection switch to apply the configuration changes.

Disable DHCP in the Web-based Management System

Note

Set the address selection switch to 0 for active software configuration! Set the address selection switch to 0 to disable address selection via DIP switch or DHCP.

- 1. Set the address selection switch to 0.
- 2. Launch a Web browser (e.g., MS Internet Explorer or Mozilla) and enter the IP address you have assigned your fieldbus node in the address bar.

- 3. Click **[Enter]** to confirm. The start page of the Web based Management System loads.
- 4. Select "Port" in the left menu bar.
- 5. Enter your user name and password in the inquiry screen (default: user = "admin", password = "wago" or user = "user", password = "user"). The HTML page "Port configuration" loads:

	Web-base	ed Management	WAGO Kontaktied GmbH & Co. Hansast D-32423 Min <u>www.wago</u>
Navigation	Po	ort configuration	
 Information Ethernet TCP/IP Port 	This page network stored in take effe	e is for the configuration of th protocols. The configuration an EEPROM and changes w ct after the next software of	ie is ill or
- SNMP	hardware	reset.	
SNMP V3		Dart Cattinga	
 Watchdog 		Port Settings	
 Clock 	Protocol	Port	Enabled
 Security 	FTP	21	V
PLC	SNTP	123	
 Features 	HTTP	80	
 IO config 	SNMP	161, 162	
● WebVisu	Ethernet IP	44818 (TCP), 2222 (UDP)	
	Modbus UDP	502	V
	Modbus TCP	502	V
	WAGO Services	6626	V
	CoDeSys	2455	V
	BootP	68	0
	DHCP	68	0
	use ID from EEDDC	hM.	6

Figure 46: WBM page "Port"

- 6. Disable DHCP by selecting the option "**BootP**" or "**use IP fom EEPROM**".
- 7. Click on **[SUBMIT]** to apply the changes in your fieldbus node.
- 8. Restart the fieldbus node to apply the settings of the Web interface.

8.2.3 Assigning the IP Address with a BootP Server

A BootP server or PLC program can be used to assign a fixed IP address.

When assigning an address using a PLC program, this can be done using the "Ethernet_Set_Network_Config" function block from the "Ethernet.lib" library integrated in WAGO-I/O-*PRO*.

Assigning the IP address using a BootP server depends on the respective BootP program. Handling is described in the respective manual for the program or in the respective integrated help texts.

Note

Set the address selection switch to 0 for active software configuration! Set the address selection switch to 0 to disable the DIP switch and to enable the software configuration via BootP.

Restart the fieldbus node after adjusting the address selection switch to apply the configuration changes.

Note

IP address assignment is not possible via the router!

The IP address is assigned via patch cable, switches, hubs, or via direct link using a crossover cable. Addresses can not be allocated via router.

Note

BootP must be enabled on the Web pages!

Note that BootP must be enabled on the internal Web pages of the WBM, HTML page "Port configuration".

BootP is enabled by default when delivered.

Additional Information

Assigning IP addresses using the WAGO-BootP server can be carried out in any Windows and Linux operating system. Any other BootP servers may also be used, besides the WAGO-BootP server.

Information

More information about the WAGO-BootP-Server The "WAGO-BootP-Server 759-315" is available free of charge on the CD "AUTOMATION Tools and Docs" (Art. No.: 0888-0412) or at <u>http://www.wago.com</u> under Downloads \rightarrow AUTOMATION \rightarrow 759-315 WACO Booth Server

WAGO-BootP-Server.

The following steps are included:

- Note MAC ID
- Note IP address
- Assigning the IP address and enable BootP
- Disable BootP

8.2.3.1 Note MAC ID

1. Write down the controller's MAC address (see label or peel-off strip). If the fieldbus is already installed, turn off the operating voltage of the fieldbus controller, then take the fieldbus controller out of the assembly of your fieldbus node and note the MAC ID of your fieldbus controller.

The MAC ID is applied to the back of the fieldbus controller or on the selfadhesive peel-off strip on the side of the fieldbus controller.

MAC ID of the fieldbus controller: $0 \ 0 : 3 \ 0 : D \ E : _ : _ : _$

- 2. Plug the fieldbus controller into the assembly of the fieldbus node.
- Use the fieldbus cable to connect the fieldbus connection of your mechanically and electrically assembled fieldbus node to an open interface on your computer. The client PC must be equipped with a network card for this connection. The controller transfer rate then depends on the network card of your client PC.
- 4. Start the client that assumes the function of the master and BootP server.
- 5. Switch on the power at the controller (DC 24 V power supply unit).

After the power is switched on, the controller is initialized. The fieldbus controller determines the I/O module configuration and creates a process image. During startup, the I/O LED (red) will flash. After a brief period, the I/O LED lights up green, indicating that the fieldbus controller is operational.

If an error occurs during start-up indicated by the I/O LED flashing red, evaluate the error code and argument and resolve the error.

Information

More information about LED signaling

The exact description for evaluating the LED signal displayed is available in the section "Diagnostics", "LED Signaling".

Error codes and error arguments are indicated by the frequency of a LED flash sequence. For example: Error code 6, followed by error argument 4, is indicated by the I/O LED after controller start-up with 6 red error code flashes, followed by four red flashes of the error argument. This indicates that an IP address has not yet been assigned.

8.2.3.2 Determining IP addresses

- 1. If the client PC is already integrated into an IP network, you can determine the client PC's IP address by clicking on **Control Panel** from the **Start Menu / Settings**.
- 2. Double-click on the **Network** icon. The network dialog window appears.

For Windows NT:

- Select the **Protocols** tab
- Mark the entry TCP/IP protocol

For Windows 2000/XP:

- Select Network and Dial-Up Connections
- In the dialog window that then appears, right click on LAN Connection and open the Properties link.
- Mark the entry Internet Protocol (TCP/IP)

Note

Reinstall TCP/IP components if required!

If the "Internet Protocol TCP/IP" entry is missing, install the corresponding TCP/IP components and reboot your computer. You will need the installation CD for Windows NT, 2000 or XP.

- 3. Then click on the **Properties...** button
- 4. The IP address, subnet mask and, where required, the client PC's gateway address appear in the Properties window. Note these values:

Client PC IP address:	 		
Subnet mask:	 		
Gateway:	 ·	·	·

5. Now select the desired IP address for your fieldbus node.

Note

Assign the client PC a fixed IP address and note common subnet! Note that the client PC, on which the BootP server is listed, must have a fixed IP address and that the fieldbus node and client PC must be in the same subnet.

6. Note the IP address you have selected:

Fieldbus node IP address:

____ · ___ · ____ · ___

8.2.3.3 Assigning the IP address and Enable BootP

- 1. Based on the handling, which depends on the BootP program set, assign the required IP address for your fieldbus node.
- 2. Enable the query/response mechanism of the BootP protocol based on the handling, which depends on the BootP program set.
- 3. To apply the new IP address, use a hardware reset to restart your fieldbus node (interrupt the voltage supply for approx. 2 seconds).

8.2.3.4 Disabling BootP

When the BootP protocol is activated the controller expects the BootP server to be permanently available. If there is no BootP server available after a PowerOn reset, the network will remain inactive.

You must then deactivate the BootP protocol so that the controller uses the configurated IP address from the EEPROM; this does away with the need for the BootP server to be permanently available.

Note

BootP must be disabled to assign the address permanently!

To apply the new IP address permanently in the fieldbus controller, BootP must be disabled.

This prevents the fieldbus coupler from receiving a new BootP request.

Note

The IP address is not lost when the BootP-Protocol is disabled!

If the BootP protocol is deactivated after addresses have been assigned, the stored IP address is retained, even after an extended loss of power, or when the controller is removed

You can disable in the Web-based Management System.

Disable BootP in the Web-based Management System

- 1. Open the **Web browser** on your client (such as the Microsoft Internet Explorer) to have the HTML pages displayed.
- 2. Enter the **IP address** for your fieldbus node in the address line of the browser and press **[Return]**.

A dialog window then appears with a password prompt. This is provided for secure access and entails three different user groups: admin, guest and user.

3. As Administrator, enter the user name: "admin" and the password "wago".

A start page is then displayed in the browser window with information about your fieldbus controller. You can navigate to other information using the hyperlinks in the left navigation bar.

	Web-based Management	WAGO Kontaktiechni GmbH & Co. Kt Hansastr. 2 D-32423 Minde www.wago.co
Navigation	Status information	
- Information		
 Ethernet 	Coupler details	
- TCP/IP	Order number 750-881	
- Port	Mac address 0030DE038178	
SNMP	Firmware revision 01.01.13 (01)	
SNMP V3		
Watchdog	Actual network settings	
Clock	IP address 192.168.1.206	
 Security 	Static Configuration	
PLC	Subnet mask 255.255.0.0	
- Features	Gateway 0.0.0.0	
	Domainnamo	
	(S)NTP-Server 0.0.0.0	
Webvisu	DNS-Server 1 0.0.0.0	
	DNS-Server 2 0.0.0.0	
	Module status	
	State Modbus Watchdog: Disabled	
	Error code: 0	
	Error argument: 0	_
	Error description: Coupler running, OK	

Figure 47: WBM page "Information"

Note

Disable the proxy server to display the web-based Management-System! If these pages are not displayed for local access to the fieldbus nodes, you must define in the Web browser properties that, as an exception, no proxy server are to be used for the node IP address.

Note

The controller IP can be changed in the network by the DHCP server! If DHCP is activated and an DHCP server is installed in the network (e.g. a router with DHCP server activated) addresses will be assigned automatically from the address range for the router after a loss of power (loss of 24 V DC power to controller). As a result, all controllers with activated DHCP will be assigned new IP addresses!

4. In the left navigation bar click on **Port** to open the HTML page for selecting a protocol.

	Web-	based	Man	agement	WAGO Ka Gmb1 1 B-32 WM	ntakttechnik f. &. Co. KG Hansastr. 27 423 Minden W.Wago.com
Navigation		Ροπ	confi	guration		
- Information	_		6 H			
- Ethernet	n	nis page is etwork prot	tor the cocols TI	contiguration of th	ne is	
-• TCP/IP	st	ored in an	EEPROI	v and changes w	ńll	
- Port	ta	ike effect ardwaro.roc	after the	next software	or	
- SNMP			οι.			
- SNMP V3						
- Watchdog		P	ort Se	ttings		
- Clock	Prote	ocol		Port	Enabled	
 Security 	ETD		<u></u>			
- PLC	FIP		21			
Features			00			
 IO config 	SNMP		161 162			
⊸ WebVisu	Ethernet IP		44818 (T	CP) 2222 (UDP)		
	Modbus UE)P	502			
	Modbus TC	P	502		V	
	WAGO Ser	vices	6626			
	CoDeSys		2455			
	BootP		68		0	
	DHCP		68		0	
	use IP from	EEPROM	 8		۲	
		U	NDO	SUBMIT		

Figure 48: WBM page "Port"

You are shown a list of all the protocols supported by the controller.

5. Select the option "**DHCP**" or "**use IP from EEPROM**". You have now deactivated the BootP protocol.

You can also deactivate any other protocols that you no longer need in the same manner, or select desired protocols and activate them explicitly.

Since communication for each protocol takes place via different ports, you can have several protocols activated simultaneously; communication takes place via these protocols.

6. Click on **SUBMIT** and then switch off the power to the controller (hardware reset), or press down the mode selector switch. The protocol settings are then saved and the controller is ready for operation.

If you have activated the MODBUS/TCP protocol, for example, you can now select and execute required MODBUS functions using the MODBUS master too, such as querying of the module configuration via register 0x2030.

If you have activated the WAGO-I/O-*PRO* for example, you can also program the controller via ETHERNET link using WAGO-I/O-*PRO* in line with Standard IEC-61131-3.

8.2.3.5 Reasons for Failed IP Address Assignment

- The controller MAC address does not correspond to the entry given in the "bootstrap.txt" file.
- The client on whom the BootP server is running is not located in the same subnet as the controller; i.e., the IP addresses do not match Example: Client IP: <u>192.168</u>.0.10 and controller IP: <u>10.1</u>.254.5
- Client and/or controller is/are not linked to the ETHERNET
- Poor signal quality (use switches or hubs)

8.3 Testing the Function of the Fieldbus Node

- 1. To ensure that the IP address is correct and to test communication with the fieldbus node, first turn off the operating voltage of the fieldbus node.
- 2. Create a non-serial connection between your client PC and the fieldbus node.

After the power is switched on, the controller is initialized. The fieldbus controller determines the I/O module configuration and creates a process image. During startup, the I/O LED (red) will flash. After a brief period, the I/O LED lights up green, indicating that the fieldbus controller is operational.

If an error occurs during start-up indicated by the I/O LED flashing red, evaluate the error code and argument and resolve the error.

Information

More information about LED signaling The exact description for evaluating the LED signal displayed is available in the section "Diagnostics", "LED Signaling".

- 3. To test the coupler's newly assigned I/P address, start a DOS window by clicking on the **Start** menu item **Programs/MS-DOS Prompt**.
- 4. In the DOS window, enter the command: "**ping** " followed by the IP address of your coupler in the following format:

ping [space] XXX . XXX . XXX . XXX (=IP address)

Figure 49: Example for the Function test of a Fieldbus Node

- 5. When the [Enter] key has been pressed, your PC will receive a query from the coupler, which will then be displayed in the DOS window. If the error message: "Timeout" appears, please compare your entries again to the allocated IP address and check all connections.
- 6. When the test has been performed successfully, you can close the DOS prompt.

The fieldbus node is now ready for communication.

8.4 **Preparing the Flash File System**

The flash file system must be prepared in order to use the Web interface of the fieldbus controller to make all configurations.

The flash file system is already prepared when delivered. However, if the flash file system has not been initialized on your fieldbus controller or it has been destroyed due to an error, you must first extract it to the flash memory to access it.

NOTICE

Do not connect 750-920 Communication Cable when energized!

To prevent damage to the communications interface, do not connect or disconnect 750-920 Communication Cable when energized! The fieldbus coupler must be deenergized!

4	
	~
-	-
1.0	

Note

Formatting erases data!

Note that formatting erases all data and configurations. Only use this function when the flash file system has not been initialized yet or has been destroyed due to an error.

- 1. Switch off the supply voltage of the fieldbus controller.
- 2. Connect the communication cable 750-920 to the configuration interface of the fieldbus controller and to a vacant serial port on your computer.
- 3. Switch on the supply voltage of the fieldbus controller.

After the power is switched on, the controller is initialized. The fieldbus controller determines the I/O module configuration and creates a process image. During startup, the I/O LED (red) will flash. After a brief period, the I/O LED lights up green, indicating that the fieldbus controller is operational.

If an error occurs during start-up indicated by the I/O LED flashing red, evaluate the error code and argument and resolve the error.

Information

More information about LED signaling The exact description for evaluating the LED signal displayed is available in the section "Diagnostics", "LED Signaling".

4. Start the **WAGO-ETHERNET-Settings** program.

- 5. In the top menu bar, select **Format** to format the file system. Formatting is complete when the status window displays "Formatting flash disk successfully done".
- 6. In the top menu bar, select **Extract** to extract the Web pages of the flash file system.

This process takes a few seconds and is complete when the status window displays "Extracting files successfully done."

Note

Restart the Fieldbus coupler/controller after [Format]/[Extract]! Make a restart of the fieldbus coupler/controller, so that the Web pages can be displayed after a Format/Extract.

8.5 Synchronizing the Real-Time Clock

The fieldbus controller's real-time clock enables a date and time indication for files in the flash file system.

At start-up, synchronize the real-time clock with the computer's current time.

There are two options to synchronize the real-time clock:

- Synchronize the real-time clock using WAGO-ETHERNET-Settings
- Synchronize the real-time clock using the Web-based Management-System

Synchronize the real-time clock using WAGO-ETHERNET-Settings

- 1. Switch off the supply voltage of the fieldbus controller.
- 2. Connect the communication cable 750-920 to the configuration interface of the fieldbus controller and to a vacant serial port on your computer.
- 3. Switch on the supply voltage of the fieldbus controller.

After the power is switched on, the controller is initialized. The fieldbus controller determines the I/O module configuration and creates a process image. During startup, the I/O LED (red) will flash. After a brief period, the I/O LED lights up green, indicating that the fieldbus controller is operational.

If an error occurs during start-up indicated by the I/O LED flashing red, evaluate the error code and argument and resolve the error.

More information about LED signaling

The exact description for evaluating the LED signal displayed is available in the section "Diagnostics", "LED Signaling".

- 4. Start the **WAGO Ethernet Settings** program.
- 5. Select the **Real-time Clock** tab.

Figure 50: Example of real-time clock synchronization in ETHERNET Settings

6. Click on the "Synchronize" button with the clock icon.

Synchronize the real-time clock using the Web-based Management-System

- 1. Launch a Web browser (e.g., MS Internet Explorer or Mozilla) and enter the IP address you have assigned your fieldbus node in the address bar.
- 2. Click **[Enter]** to confirm. The start page of the Web interface loads.
- 3. Select "Clock" in the left menu bar.
- 4. Enter your user name and password in the inquiry screen (default: user = "admin", password = "wago" or user = "user", password = "user"). The HTML page "Clock configuration" loads:

	Web-based Ma	nagement	WAGO Koneskowskanik GanbH & Co. KG Hannauer. 27 D-32422 Minden <u>www.wago.com</u>
	Clock conf	guration	
	Configurat	ion Data	
	Time on device	13:43:16	
	Date (YYYY-MM-DD)	2010-06-16	
	Timezone (+/- hour:minute)	+1:00	
	Daylight Saving Time (DST)		
l	12 hour clock		
	UNDO	SUBMIT	

Figure 1: Example of WBM clock configuration

- 5. Set the values in the fields "Time on device", "Date" and "Timezone" to the current values and enable the "Daylight Saving Time (DST)" option if necessary.
- 6. Click on **[SUBMIT]** to apply the changes in your fieldbus node.
- 7. Restart the fieldbus node to apply the settings of the Web interface.

8.6 **Restoring Factory Settings**

To restore the factory settings, proceed as follows:

- 1. Switch off the supply voltage of the fieldbus controller.
- 2. Connect the communication cable 750-920 to the configuration interface of the fieldbus controller and to a vacant serial port on your computer.
- 3. Switch on the supply voltage of the fieldbus controller.
- 4 Start the **WAGO-ETHERNET-Settings** program.
- 5. In the top menu bar, select **Default** and click **[Yes]** to confirm.

A restart of the fieldbus node is implemented automatically. The start takes place with the default settings.

9 Programming the PFC using WAGO-I/O-PRO

Using IEC 61131-3 programming, the Programmable Fieldbus Controller ETHERNET 750-881 can also utilize the function of a PLC in addition to the functions of a fieldbus coupler. Creation of an application program in line with IEC 61131-3 is performed using the programming tool WAGO-I/O-*PRO*.

Note

Activate option "CoDeSys" in the web-based Management System for programming!

Pay attention, the IEC 61131-3 programming of the controller via ETHERNET requires that the check box **CoDeSys** be activated at the Website "Port Configuration" (default).

You can, however, also connect the client PC and controller serially for programming using a programming cable.

A description of programming using WAGO-I/O-*PRO* is not included in this manual. The following sections, on the other hand, contain important information about creating projects in WAGO-I/O-*PRO* and about special modules that you can use explicitly for programming of the Programmable Fieldbus Controller ETHERNET.

Explanations are also provided as to how the IEC 61131-3 program is transferred and how suitable communication drivers are loaded.

Information

i

Additional Information:

For a detailed description of using the software, refer to the manual for the "WAGO-I/O-*PRO*". This manual is located in the Internet under: <u>www.wago.com</u> \rightarrow Documentation \rightarrow WAGO-I/O-SYSTEM 759 \rightarrow WAGO-I/O-PRO \rightarrow 759-333

- 1. Start the programming tool at **Start \ Programs \ WAGO-I/O-PRO**.
- 2. Under File / New create a new project

A dialog window then appears on which you can set the target system for programming.

Target Settings		
Configuration:	None	•
	None	
	WAG0_750-881	

Figure 51: Dialog window for target system settings

- 3. Select the WAGO 750-881 ETHERNET Controller10/100 Mbit/s; digital and analog Signals750-881 by entering WAGO_750-881 and then click OK.
- 4. In the dialog window that appears select the program type (AWL, KOP, FUP, AS, ST or CFC).

To ensure that you can access all I/O module data properly in your new project, first compile the I/O module configuration based on the existing fieldbus node hardware and map it in the configuration file "EA-config.xml".

This file defines whether write access is permitted to the modules from the IEC-61131-3 program, from the MODBUS/TCP or from Ethernet/IP.

As described below, this file can be generated via configuration using the WAGO I/O Configurator.

9.1 Configuration using the WAGO-I/O-PRO I/O Configurator

The I/O Configurator is a plug-in incorporated into WAGO-I/O-*PRO* for assigning addresses to modules at a controller.

- 1. In the left half of the screen for the WAGO-I/O-*PRO* interface, select the tab **Resources**.
- 2. In the tree structure click **Control system configuration**. The I/O Configurator then starts up.
- 3. Expand the branch **Hardware configuration** in the tree structure with the sub-branch **K Bus**.
- 4. Right click on **K Bus** or on an **I/O module** to open the menu for adding and attaching I/O modules.
- 5. By right clicking on the entry K Bus and the command Attach subelement in the menu, you can select the required I/O module from the I/O module catalog.
 (In the new versions of the I/O Configurator open the I/O module catalog by additional clicking on the button Add.)
- 6. Attach it to the end of the **K Bus** structure using **Insert** and then clicking **OK**. In this case, the command "Insert element" is deactivated.
- 7. To insert an I/O module in front of a selected I/O module in the K Bus structure, right click on an I/O module that has already been selected and then click **Insert element**. In this case, the command "Insert sub-element" is deactivated.

You can also access these commands with the **Insert** menu in the main window menu bar. The dialog window "I/O configuration" for selecting modules is opened both by **Attach sub-element** and by **Insert element**. In this dialog window, you can position all the required modules in your node configuration

8. Position all of the required I/O modules until this arrangement corresponds to the configuration of the physical node.

Complete the tree structure in this process for each module in your hardware that sends or receives data.

Note

The terminal bus structure in the WAGO I/O Configurator must match the physical node structure!

The number of modules that send or receive data must correspond to the existing hardware (except for supply modules, copying modules or end modules, for example).

For the number of input and output bits or bytes of the individual I/O modules please, refer to the corresponding description of the I/O modules.

Information

Additional Information

To obtain further information about an I/O module, either select that module from the catalog, or in the current configuration and then click the button Data Sheet. The module is then shown in a separate window with its associated data sheet. For the current version of the data sheets go to <u>http://www.wago.com</u> under Documentation.

9. Click **OK** to accept the node configuration and close the dialog window.

The addresses for the control system configuration are then recalculated and the tree structure for the configuration updated.

If required, you can also modify the authorization privileges for individual I/O modules if they are to be accessed via fieldbus (MODBUS/TCP/IP or Ethernet/IP). Initially, write access from the PLC is defined for each I/O module that is added. Proceed as follows to change this setting:

- 10. Click on a module in the configuration.
- 11. In the right dialog window under the tab "Module parameters" define for each module from where access to the module data is to be carried out.

You can choose from the following settings in the column "Value" for this:

- PLC (standard setting) Access from PLC
 - fieldbus 1 Access from MODBUS/TCP
- fieldbus 2 Access from Ethernet/IP

🎭 CoDeSys - myProg_12.pro - [Steuerungskonfiguration]	
III Datei Bearbeiten Projekt Eir	hrügen Extras Online Fenster Hilfe	_8×
Ressourcen Bihliothek Standard ib 22 Dibliothek SYSLIDCALLB, Dibliothek SYSLIDCALLB, Dibliothek SySLIDCALLB, Dibliothek verwaiter Statuserungskonfiguration Statuserungskonfiguration Taskkonfiguration Taskkonfiguration	Hardware configuration Hardware configu	
J	JONDINE JO	D LESEN

Figure 52: Write access via module parameters

After completing these settings you can begin the IEC-61131-3 programming.

An "EA-config.xml" configuration file is automatically generated and stored in the fieldbus controller, when you transfer the project (Menu **project** > **transfer/transfer all**) and download it in the fieldbus controller.

Note

Set "fieldbus1", when directly writing to a hardware address via MODBUS! Set fieldbus 1 if you wish to write directly to a hardware address via MODBUS. Otherwise the modules will be allocated to the PLC, making writing from a different location impossible.

Information

Additional Information

For a detailed description of using the software, refer to the manual for the "WAGO-I/O-*PRO*". This manual is located in the Internet under: <u>www.wago.com</u> \rightarrow Documentation \rightarrow WAGO-I/O-SYSTEM759 \rightarrow WAGO-I/O-PRO \rightarrow 759-333

9.1.1 Configuration using the "EA-config.xml" File

You can also create the file "EA-config.xml" using an editor and store it in the controller directory "/etc" by means of FTP.

Configuration using the file "EA-config.xml" that is already stored in the controller is described in this section.

Note

Configuration entries in WAGO-I/O-PRO overwrite "EA-config.xml" upon download!

If you wish to perform module assignment directly using the "EAconfig.xml" file stored in the controller, do not save any configuration data in WAGO-I/O-*PRO* prior to this, as the file is overwritten by entries in the WAGO-I/O-*PRO* on each download.

1. Open any FTP client. You can also use the Windows FTP client in the DOS prompt window:

ftp://[IP address of controller], e.g. ftp://192.168.1.201

2. Then, enter **admin** as the user login and **wago** as the password..

The file "EA-config.xml" is located in the "etc" folder.

3. Copy this file to a local directory on your PC and open it in an editor installed on your PC (e.g., "WordPad").

The file already contains the following syntax:

Figure 53: EA-config.xml

The fourth line contains the necessary information for the first I/O module. The entry MAP=PLC assigns write access privileges to the IEC-61131-3 program for the first module.

4. If you want to enable access via MODBUS/TCP, replace "PLC" with "FB1" and for access from Ethernet/IP, replace "PLC" with "FB2":

<Module ARTIKEL NUMBER=" " MAP="**PLC**" LOC="ALL"> </Module>

<Module ARTIKEL NUMBER="" MAP="**FB1**" LOC="ALL"> </Module>

5. Then complete the fourth line for each individual module using this syntax and set the corresponding assigned access privileges.

Note

The number of line entries must correspond with the number of bus terminals used!

It is imperative that the number of line entries concurs with the number of existing hardware modules.

6. Save the file and reload it to the controller file system via FTP client.

You can then begin with IEC-61131-3 programming.

Information

Additional Information:

For a detailed description of how to use the software, refer to the WAGO-I/O-*PRO* manual. The manual is available in the Internet under: <u>http://www.wago.com</u> \rightarrow Documentation \rightarrow WAGO Software \rightarrow WAGO-I/O-

 $PRO \rightarrow 759-333$

9.2 ETHERNET Libraries for WAGO-I/O-PRO

Various libraries are available in WAGO-I/O-*PRO* for different IEC 61131-3 programming tasks. These libraries contain function blocks that can be used universally to facilitate and accelerate the creation of programs.

Once the libraries have been integrated, function blocks, functions and data types will be available that you can use the same as ones you have specifically defined.

Information

Additional Information

All libraries are included on the installation CD for the software WAGO-I/O-*PRO* or in the Internet under: <u>http://www.wago.com</u> \rightarrow Downloads \rightarrow AUTOMATION

The libraries described below are specific to ETHERNET projects with WAGO-I/O-*PRO*.

Library	Description
Ethernet.lib	Function blocks for communication via ETHERNET
WAGOLibEthernet_01.lib	Function blocks that can set up a link to a remote server or client via TCP protocol to exchange data with any potential UDP server or client via UDP protocol
WAGOLibModbus_IP_01.lib	Function blocks that set up links with one or more slaves
ModbusEthernet_04.lib	Function blocks for data exchange with several MODBUS/TCP/UDP slaves Also a function block that provides a MODBUS server that maps the MODBUS services on a word array.
SysLibSockets.lib	Function block for access to sockets for communication via TCP/IP and UDP.
WagoLibSockets.lib	Function blocks for access to sockets for communication via TCP/IP and UDP Contains additional functions in addition to SysyLibSockets.lib.
Mail_02.lib	Function block for sending e-mails
WAGOLibMail_02.lib	Function block for sending e-mails
WagoLibSnmpEx_01.lib	Function blocks for sending SNMP-V1 traps together with the parameters for the type DWORD and STRING(120) (starting with software version SW ≥ 07).
WagoLibSntp.lib	Function blocks for setting and using the simple network time protocol (SNTP)
WagoLibFtp.lib	Function blocks for setting and using the file transfer protocol (FTP)
WAGOLibTerminalDiag.lib	Function blocks for the output of module, channel and diagnostic data of I/O modules that provide diagnostic data

Table 37: ETHERN	ET libraries for	WAGO-I/O-PRO
ruole 57. Eritera	LI HOIMING IOI	11100 10 1110

Information

Additional Information

For a detailed description of the function blocks and use of the software, refer to the online Help function for WAGO-I/O-*PRO* or the WAGO-I/O-*PRO* manual in the Internet under: <u>http://www.wago.com</u> \rightarrow Documentation \rightarrow WAGO Software \rightarrow WAGO-I/O-*PRO* \rightarrow 759-333.

9.3 **Functional Restrictions and Limits**

The basis of WAGO-I/O-*PRO*, the standard programming system CoDeSys by 3S, has an integrated visualization. Dependend on the target, this visualization can be used in the variants "HMI", "TargetVisu" and "WebVisu".

The fieldbus controller supports the process variants "HMI" and "WebVisu". Depending on the version, there are technological limitations.

Several options for complex visualization objects "Alarm" and "Trend" are only provided by the "HMI" version. This applies, for example, to sending emails as a response to an alarm or for navigating through and generating historical trend data.

Compared with "HMI," the "WebVisu" on the fieldbus controller is executed within considerably tighter physical limits. Whereas the "HMI" can call upon the resources of a PC, the "WebVisu" operate within the following restrictions:

File system (2 MB):

The overall size of the PLC program, visualization files, bitmaps, log files, configuration files, etc. must fit into the file system. The PLC browser delivers the amount of free disk space in response to the command "fds" (FreeDiscSpace).

Process data buffer (16 kB):

The WebVisu uses its own protocol for exchanging process data between applet and control system. In doing so, the process data is transmitted with ASCII coding. The pipe character ("|") separates two process values. For this reason, the required space of a process data variable in the process data buffer not only depends on the data type, but also on the process values itself. A "WORD" variable therefore occupies between one byte for the values 0...9 and five bytes for values greater than 10000. The selected format allows only a rough estimate of the space required for the individual process data in the process data buffer. If the size is exceeded, the WebVisu no longer works as expected.

The number of modules (1023/default):

The total size of the PLC program is determined, among other things, by the maximum number of modules. This value can be configured in the target system settings.

Computing power/processor time:

The 750-881 is based on a real-time operating system with pre-emptive multitasking. High-priority processes such as the PLC program will eliminate low-priority processes.

The web server supplies process data and applets for the web visualization. Make sure when configuring tasks, that there is sufficient processor time available for all processes. The "freewheeling" task call option is not suitable in conjunction with the "WebVisu"; as in this case, the high-priority PLC program suppresses the web server. Instead of this, use the "cyclic" task call option with a realistic value. The PLC browser provides an overview of the real execution times for all

CoDeSys tasks with the command "tsk".

If in a PLC program, operating system functions are used; e.g., for the handling of "sockets" or the "file system," these execution times are not taken into consideration covered by the command "tsk".

CTU counter:

The CTU counter operates in a value range of 0 to 32767.

Network load:

The Programmable Fieldbus Controller ETHERNET has one CPU responsible both for running the PLC program and for handling network traffic. Ethernet communication demands that every telegram received is processed, regardless of whether it is intended for the Programmable Fieldbus Controller ETHERNET or not.

A significant reduction of the network load can be achieved by configuring the bandwidth limit of the integrated switch module or by using external "switches" instead of "hubs".

However, broadcast telegrams can either only be checked by the sender or with configurable switches that have broadcast limiting. A network protocol analyzer/monitor such as <u>www.ethereal.com</u> provides an overview of current network loading.

Note

Do not use bandwidth limits to increase the operational safety!

The bandwidth limit that can be configured in the WBM under the "Ethernet" link is not suitable for increasing the operating reliability of the "WebVisu", as in this case telegrams are ignored or rejected.

Information

Additional Information

The definition of hard benchmark data is not possible (due to the reasons mentioned above). For planning support, please use the application notes published online for relevant projects featuring the capability of Web visualization. This information is located at <u>http://www.wago.com</u>.

Note

Note the maximum number of write cycles of the EEPROM!

Fieldbus couplers/controllers save some information such as IP addresses and IP parameters in the EEPROM to make it available after a restart. The memory cycles of an EEPROM are generally limited. Beyond a limit of approx. 1 million write cycles, memory can no longer be assured. A defective EEPROM only becomes apparent after a restart by software reset or power-on. Due to a bad checksum, the fieldbus coupler/controller then always starts with the default parameters.

The following functions use the EEPROM:

- WAGO-I/O-PRO
 - WagoLibDaylightSaving S
 - EthernetLib

SetDaylightSavings SetNetworkConfig SetVariables

- MODBUS
 - Register 0x1035 Time Offset
 - Register 0x100B Watchdog parameters
 - Register 0x1028 Network configuration
 - Register 0x1036 Daylight saving
 - Register 0x1037 Modbus response delay
 - Register 0x2035 PI parameter
 - Register 0x2043 Default configuration

• Ethernet/IP

- Class 0xF5
- Class 0xF6
- Class 0x64
- Parameter assignments
 - **BootP** new parameters
 - **DHCP** new parameters
 - WAGO MIB write access

9.4 General Information about IEC Tasks

Please note the following information when programming your IEC tasks:

Note

Use different priorities for IEC tasks!

IEC tasks must have different priorities, as otherwise an error will occur during translating of the application.

An interruption of IEC tasks is possible through tasks of higher priority!

An ongoing task may be interrupted by tasks with higher priorities. Execution of the task that has been interrupted is resumed only when there are no other higher-priority tasks to be executed.

Distortion of variables in overlapping areas of the process image!

If several IEC tasks utilize input or output variables with the same, or overlapping addresses in the process image, the values for the input or output variables may change while the IEC task is being executed!

Observe waiting periods of free-running tasks!

Running tasks are halted after each task cycle for half the time that the task proper requires (min. 1 ms). Execution of the task is then resumed.

Example: 1^{st} Task 4 ms \rightarrow Waiting period 2 ms 2^{nd} Task 2 ms \rightarrow Waiting period 1 ms

The default task is created by default!

If no task has been defined in the task configuration, a running default task is created during translation. This task, called "Default task," is recognized by this name in the firmware, meaning that the name "Default task" can not be used for other task names.

Observe the watchdog sensitivity for cyclic tasks!

The watchdog sensitivity indicates how many times the watchdog time is exceeded for an even to be triggered. You set the sensitivity in WAGO-I/O-*PRO* under Register **Resources** > **Task Configuration** for Cyclical Tasks. The values 1 and 0 are equivalent with regard to sensitivity. A sensitivity value of 0 or 1 results in the watchdog event being triggered when the watchdog time is exceeded on time. With a sensitivity value of 2, for instance, the watchdog time must be exceeded in two consecutive task cycles in order for the watchdog event to be triggered.

The following applies to cyclic tasks with watchdog activated:

Note

Reference for Watchdog Settings!

For each tasks created, a watchdog can be enabled that monitors the execution time of a task.

If the task runtime exceeds the specified watchdog time (e.g., t#200 ms), then the watchdog event has occurred.

The runtime system stops the IEC program and reports an error.

Figure 54: Watchdog runtime is less than the task runtime

If the watchdog time set is greater than the call interval of the task, then the watchdog is restarted for each task call interval.

Figure 55: Watchdog runtime is greater than the task call interval

To cyclic tasks applies:

Note

Cyclic tasks with > 30 min. call intervals not possible! Cyclic tasks with a call interval of more than 30 minutes are not possible.

9.4.1 IEC Task Sequence

- 1. Determine the system time (tStart).
- 2. If no full internal bus cycle has run since the last time the outputs were written:

 \rightarrow Wait until the next internal bus cycle is completed.

- 3. Reading of inputs and reading back of the outputs from the process image.
- 4. If the application program has been started.
 → Execute the program codes for this task.
- 5. Writing of the outputs to the process image.
- 6. Determine the system time (tEnd).
 → tEnd tStart = runtime for the IEC task

9.4.2 Overview of Most Important Task Priorities

Task	Importance of the execution
Internal bus task, fieldbus task	of priority before all others
Normal task	after the internal bus and fieldbus tasks
PLC-Comm task	after the normal tasks
Background task	after the PLC-Comm tasks

I/O Bus Task / Fieldbus Task (Internal)

The I/O Bus task is an internal task, which updates the I/O module data from the process image. Fieldbus tasks are triggered by fieldbus events (communications); therefore, they only use processing time when the fieldbus is active (MODBUS/Ethernet/IP).

Normal task (IEC tasks 1-10)

IEC tasks with this priority may be interrupted by the internal bus tasks. Therefore, configuration for the connected modules and communication via fieldbus with the watchdog activated for the task call interval must be taken into account here.

PLC-Comm task (internal)

The PLC-Comm task is active when logged in and takes up communication with the CoDeSys gateway.

Background task (IEC-Task priorities 11-31 that can be set in CoDeSys)

All internal tasks have a priority higher than that for the IEC background tasks. These tasks are therefore very well-suited for performing time-intensive and noncritical time tasks, such as calling up functions in the SysLibFile.lib.

Information

Additional Information For a detailed description of using the software, refer to the manual for the "WAGO-I/O-*PRO*". This manual is located in the Internet under: <u>www.wago.com</u> \rightarrow Documentation \rightarrow WAGO Software \rightarrow WAGO-I/O-*PRO* \rightarrow 759-333.

9.5 System Events

In place of a task, a system event can also call up a project module for processing.

The system events to be employed for this depend on the target system. These events consist of the list of supported standard system events for the control system and any other manufacturer-specific events which may have been added.

Possible events, for example: Stop, Start, Online change.

A complete list of all system events is provided at WAGO-I/O-*PRO* in tab **Resources > Task configuration > System events**.

9.5.1 Enabling/disabling system events

- 1. Open the register **resources** > **task configuration** > **system events** in WAGO-I/O-*PRO* (see the following Figure).
- 2. In order to call up a module via an event, activate the entries by setting a hatch mark in the respective control boxes.
- 3. Disable the control boxes by removing the hatch marks through a mouse click.

Figure 56: System events

Information

Additional Information:

Allocation of the system events to the specific modules to be called up is clarified in the manual for the programming tool WAGO-I/O-*PRO* in the Internet under: <u>http://www.wago.com</u> \rightarrow Documentation \rightarrow WAGO Software \rightarrow WAGO-I/O-*PRO* \rightarrow 759-333

9.6 Transfer the IEC program to the controller

Transfer from the PC to the controller of the program for the created IEC-61131-3 application can be performed two ways (see following sections).

- Direct transfer via serial RS-232 port
- Transfer by means of TCP/IP via fieldbus

Suitable communication drivers are required for transfer; these can be loaded and configured using WAGO-I/O-*PRO*.

Note

Check/adjust communications parameters of the driver

When selecting the desired driver, watch for the proper settings and adjustments of the communications parameters (see the following description).

Note

"Reset" and "Start" are required to set the physical outputs! The initialization values for the physical outputs are not set immediately after downloading. Select **Online** > **Reset** and subsequently **Online** > **Start** in the menu bar of WAGO I/O-*PRO* to set the values.

Note

Stop application before generating large boot projects!

Stop the WAGO-I/O-*PRO* application via **Online** > **Stop** before generating a very large boot project, since this may otherwise cause stopping the internal bus. You can restart the application after creating the boot project.

Note

Handling persistent data affects the program start!

Depending on the variable type, the number and sizes of the persistent data and their combination, such as in function modules, handling with persistent data can delay the program start by an extended initialization phase.

Information

Additional Information

The following description is used for fast access. For details on installing missing communication drivers and using the software, refer to "WAGO-I/O-*PRO*" available in the Internet under:

<u>www.wago.com</u> \rightarrow Service \rightarrow Downloads \rightarrow Documentation \rightarrow WAGO Software \rightarrow WAGO-I/O-*PRO*.

9.6.1 Transfer via Serial Service Port

Note

Watch the position of the mode selector switch when accessing the controller! Prerequisite for the access to the fieldbus controller is that the operating mode switch of the controller, which is located behind the cover of the fieldbus controller next to the service interface, is in the center or top position.

Use the WAGO communication cable to set up a physical connection via serial service port. This cable is included in the scope of supply for the IEC-61131-3 programming tool (order no. 759-333), or can be procured as an accessory item under order no. 750-920.

NOTICE

Do not connect 750-920 Communication Cable when energized!

To prevent damage to the communications interface, do not connect or disconnect 750-920 Communication Cable when energized! The fieldbus controller must be de-energized!

- Check that the controller mode selector switch is set to the center or top position.
 If this is not the case, move the mode selector switch to the center or top position.
- 2. Use the WAGO communication cable to connect a COM port of your PC to the controller communication port.

A communication driver is required for serial data transfer. This driver and its parameters must be entered in the WAGO-I/O-*PRO* in the dialog window "Communication parameters".

- 3. Start the WAGO-I/O-*PRO* software under Start > Programs > WAGO Software > WAGO-I/O-*PRO*.
- 4. In the menu **Online** select the item **Communication parameters**.

The dialog window "Communication parameters" then appears. The channels of the currently connected gateway servers are shown on the left side of the dialogue and the already installed communications drivers are shown below. This window is empty in its default settings.

5. Click **New** to set up a link and then enter a name, such as RS-232 Connection.

localh ⊡- Et	nosť via Tcp/lp				ОК.
	PC Client Standar	Name	Value	Comment	Cancel
	Communication	Parameters:	New Channel	×	New
	Name RS-232	Connection		ОК	Remove
	Device			Cancel	Gateway .
	Name Ethernet_TCP_IF OPC Client OPC Client 2 Tag Tcp/Ip Serial (RS232) Tag (I (cure) 2)	Info WAGO Eth WAGO OP gs WAGO OP 3S Top/Ip 3S Serial R 2S Top/Ip	ernet TCP/IP Treiber C Client Treiber C Client Treiber driver S232 driver S232 driver		Update

Figure 57: Dialog window "Communication parameters"

6. In the selection window, mark the required driver in the right side of the window, Serial (RS-232) 3S Serial RS-232 driver, to configure the serial link between the PC and the controller.

The following properties for the serial port are shown in the center dialog window:

•	Dort:	COMI
•	FOIL.	COMI
•	Baud rate:	19200
•	Parity:	Even
•	Stop-bits:	1
•	Motorola byte order:	No

- 7. If necessary, change the entries according to the above values by clicking on the respective value and editing it.
- 8. Confirm these settings by clicking **OK**

The RS-232 port is now configured for transferring the application.

9. Under Online, click the menu item Login to log in to the controller

The WAGO-I/O-*PRO* Server is active during online operation. The communication parameters can not be called up during this time.

Depending on whether a program is already present in the controller, a window will appear asking whether a (new) program should be loaded.

10. Respond with Yes to load the current program.

11. In menu Online, click on Create Boot project.

You compiled project will also be executed by this method, if you restart the controller or if there is a power failure.

12. Once the program has been loaded, start program processing in the menu **Online**, menu item **Start**.

This command starts the processing of your program in the control system or in the simulation.

"ONLINE" and "RUNNING" will then appear at the right of the status bar.

13. To terminate online operation, click the menu item **Log off** in the menu **Online**.

9.6.2 Transfer via Fieldbus and ETHERNET

The physical link between the PC and the controller is set up via fieldbus. An appropriate communication driver is required for data transfer. The driver and its parameters must be entered in the WAGO-I/O-*PRO* in the dialog window "Communication parameters".

Note

Controller needs IP address for access!

The controller must have an IP address before it can be accessed. The operating mode switch, which is located behind the cover of the fieldbus controller next to the service interface, must be in the center or top position.

- 1. Start the WAGO-I/O-*PRO* software under **Start / Programs / WAGO-I/O-***PRO* or by clicking the program icon on the desktop).
- 2. In the menu **Online** select the item **Communication parameters**.

The dialog window "Communication parameters" then appears. The channels of the currently connected gateway servers are shown on the left side of the dialogue and the already installed communications drivers are shown below. This window is empty in its default settings.

- 3. Click **New** to set up a connection and then specify a name, e.g. TcpIp connection.
- 4. Mark the required TCP/IP driver in the right side of the dialog window to configure the link between the PC and the controller via ETHERNET. Use the new driver version "Tcp/Ip" (3S Tcp/Ip driver).

The following standard entries are shown in the center dialog window:

- IP address: IP address of your controller
- Port number: 2455
- Motorolabyteorder: No
- Debug level: 16#0000
- 5. Change any entries as you may require.
- 6. Confirm with **OK**.

You have now configured the TCP/IP link with the communication parameters/drivers.

7. Under **Online**, click the menu item **Login** to log in to the controller

The WAGO-I/O-*PRO* Server is active during online operation. The communication parameters can not be called up during this time.

Depending on whether a program is already present in the controller, a window will appear asking whether a (new) program should be loaded.

- 8. Respond with **Yes** to load the current program.
- 9. In menu **Online**, click on **Create Boot project**.

You compiled project will also be executed by this method, if you restart the controller or if there is a power failure.

10. Once the program has been loaded, start program processing in the menu **Online**, menu item **Start**.

This command starts the processing of your program in the control system or in the simulation.

"ONLINE" and "RUNNING" will then appear at the right of the status bar.

11. To terminate online operation, click the menu item **Log off** in the menu **Online**.

10 Configuring via the Web-Based Management System (WBM)

An internal file system and an integrated Web server can be used for configuration and administration of the system. Together, they are referred to as the Web-Based Management System (WBM).

The HTML pages saved internally provide you with information about the configuration and status of the fieldbus node. In addition, you can also change the configuration of the device here.

You can also save HTML pages created yourself via the implemented file system.

Note

Always restart after making changes to the configuration!

The system must always be restarted for the changed configuration settings to take effect.

- 1. To open the WBM, launch a Web browser (e.g., Microsoft Internet Explorer or Mozilla Firefox).
- 2. Enter the IP address of the fieldbus coupler/controller in the address bar (192.168.1.1 by default or as previously configured).
- 3. Click **[Enter]** to confirm. The start page of WBM loads.
- 4. Select the link to the desired HTML page in the left navigation bar. A query dialog appears.
- 5. Enter your user name and password in the query dialog (default: user = "admin", password = "wago" or user = "user", password = "user"). The corresponding HTML page is loaded.
- 6. Make the desired settings.
- 7. Press **[SUBMIT]** to confirm your changes or press **[UNDO]** to discard the changes.
- 8. Restart the system to apply the settings.

10.1 Information

The WBM page "Information" contains an overview of all important information about your fieldbus coupler/controller.

	Web-based Management	WAGO Kontaktischnik GmbH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
Navigation	Status information	
- Information		
- Ethernet	Coupler details	
- TCP/IP	Order number 750-881	
- Port	Mac address 0030DE038178	
- SNMP	Firmware revision 01.01.13 (01)	
- SNMP V3		
- Watchdog	Actual network settings	
- Clock	IP address 192.168.1.206	
- Security	Static Configuration	
- PLC	Subnet mask 255.255.0.0	
- Features	Hostname	
- IO config	Domainname	
- WebVisu	(S)NTP-Server 0.0.0.0	
	DNS-Server 1 0.0.0.0	
	DNS-Server 2 0.0.0.0	
	Wodule status	
	State Modbus Watchdog: Disabled	
	Error code: 0	
	Error argument: U	
	Enor description. Couplet fulliling, OK	

Figure 58: WBM page "Information"

Coupler details			
Entry	Default	Value (example)	Description
Order number	750-881/000-000	750-881/000-000	Order number
Mac address	0030DEXXXXXX	0030DE000006	Hardware MAC address
Firmware revision	kk.ff.bb (rr)	01.01.09 (00)	Firmware revision number (kk = compatibility, ff = functionality, bb = bugfix, rr = revision)
Actual network	settings		
Entry	Default	Value (example)	Description
IP address	192.168.1.1	192.168.1.80	IP address, Type of IP address assignment
Subnet mask	255.255.255.0	255.255.255.240	Subnet mask
Gateway	0.0.0.0	192.168.1.251	Gateway
Hostname			Host name (not assigned here)
Domainname			Domain name (not assigned here)
(S)NTP server	0.0.0.0	0.0.0.0	Address of (S)NTP server
DNS server 1	0.0.0.0	0.0.0.0	Address of first DNS server
DNS server 2	0.0.0.0	0.0.0.0	Address of second DNS server
Module status			
Entry	Default	Value (example)	Description
State Modbus Watchdog	Disabled	Disabled	Status of Modbus Watchdog
Error code	0	10	Error code
Error argument	0	5	Error argument
Error description	Coupler running, OK	Mismatch in CoDeSys IO- configuration	Error description

Table 39: WBM page "Information"

10.2 Ethernet

Use the "Ethernet" HTML page to set the data transfer rate and bandwidth limit for each of the two switch ports for data transfer via Ethernet.

MAGO	Web-based Management	CAR				WALCH Rood and the Art
vigation		Ethernet	onfigura	tion		
ormation		Statistics of the second	COMP. SHA	MARCH 1		
ernet	This page is for the configuration of the Et	hernet Switch and Aging set	ngs. The confi	guration is stored in	an EEPRCM and changes will take effect	í.
HP .	after the next software or hardware reset.	1962				
						-
AP		Phy Co		ien -		
AP V3		The second	APR AND ADD			
chdog		Desc	Port 1	Port2		
zk :		Enable Port	p	12		
urity		Enable Autonegot	tton R:	- R		
Info		10 MBit Half Duple	C C	C		
1		10 MBit Full Duple	- C	c		
ures		100 MBit Half Dup	a c	e		
onfig		100 MBit Full Dupi	x .5	10		
Info		LINDO	I DOWNTI			
bVisu		Longe and	100000			
		Cont Descript Fast Age	chip guration Enable	2		
		Mise: C	infigurati	on		
		Desc Port	Port2	internal Port		
		Input Limit Rate 84Kbps	· 64shps	· 6482gs ·		
		Output Limit Rate No Link	· NoLinit	· FipLinit ·		
		BC protection R	12			
		Port Mirror				
		Srutter Port (1	4			
		Mirror Port R	0	0		
		The second				

Figure 59: WBM-Seite "Ethernet"

Phy Configuration						
Fntry	Dof	mlt		Description		
	DUI	iuii		Enable Port 1/Port 2		
Enable Port	\checkmark			Disable Port 1/Dart 2		
Enable autonegotiation	o			 Disable Port 1/Port 2 Enable Autonegotiation Automatically set the best possible transmission speed with "Enable Autonegotiation". 		
				O Enable Autonegotiation		
10 MBit Half Duplex 10 MBit Full Duplex 100 MBit Half Duplex 100 MBit Full Duplex	0 0 0 0			Select half or full duplex for the ETHERNET to configure a fixed transmission speed 10 or 100 MBit		
Chip Configurtaion						
Entry	Defa	ult v	alue	Description		
Fast Aging				 Enable "Fast Aging" "Fast Aging" ensures that the cache for the MAC addresses is cleared faster in the switch. This may be required if a redundancy system (e.g., using a Jet-Ring network or comparable technology) needs to be set up. 		
				Disable "Fast Aging"		
Misc. Configuration	r					
Fntry	Port			Description		
	1	2	in- tornal	Description		
Input Limit Rate	No Limit ▼		•	The Input Limit Rate limits network traffic when receiving. The rate is indicated in megabytes or kilobytes per second. If the limit is exceeded, packets are lost.		
Output Limit Rate	No Limit 🕶		•	The Output Limit Rate limits network traffic when sending. The rate is indicated in megabytes or kilobytes per second. If the limit is exceeded, packets are lost.		
BC protection				 Broadcast Protection limits the number of broadcast telegrams per unit of time. If protection is on, the broadcast packets are limited at 100 Mbit to 8 packets per 10 ms and at 10 Mbit to 8 packets per 100 ms. If the limit is exceeded, packets are lost. 		
				Broadcast Protection disabled.		
Port Mirror				 Enable port mirroring Port Mirroring is used for network diagnostics. Packets are mirrored from one port (mirror port) to another (sniffer port). 		
Sniffer Port	0	\odot		Select the sniffer port the mirror port should be mirrored to.		
Mirror Port	\odot	0	0	Select the mirror port which should be mirrored to the sniffer port.		
Ethernet MTU		1500)	Maximum packet size of a protocol, which can be transferred without fragmentation ("Maximum Transmission Unit" - MTU)		

Table 40: WBM page "Ethernet"

Note

Set the MTU value for fragmentation only!

Only set the value for MTU, i.e., the maximum packet size between client and server, if you are using a tunnel protocol (e.g., VPN) for ETHERNET communication and the packets must be fragmented. Setting the value is independent of the transmission mode selected.

Note

Configure ETHERNET transmission mode correctly!

A fault configuration of the ETHERNET transmission mode may result in a lost connection, poor network performance or faulty performance of the fieldbus coupler/controller.

1.1	
	-

Note

All ETHERNET ports cannot be disabled!

Both ETHERNET ports can be switched off. If both ports are disabled and you press **[SUBMIT]**, the selection is not applied and the previous values are restored.

10.3 TCP/IP

You can configure network addressing and network identification on the "TCP/IP" HTML page.

Note

Set the DIP switch to "0" and enable "use IP from EEPROM"!

Before you change parameters on this page, set the DIP switch to zero and on the "Port configuration" WBM page, set the "use IP from EEPROM" option! If these conditions are not met, the DIP switch settings are applied instead.

	Web-based Manag	WAGO Kontskittechnik GabH & Co. KG Hansastr. 27 D-32423 Minden www.wago.com	
Navigation	TCP/IP config	uration	
 Information Ethernet TCP/IP Port SNMP SNMP V3 Watchdog Clock Security PLC 	This page is for the con basic TCP/IP network p parameters are stored i and changes will take effe software or hardware rese Note that these settings the DIP switch is set to ze selected 'use IP from EE configuration page! Othem from DIP switch will be use	figuration of the arameters. The n an EEPROM act after the next t. are used only if ro and you have PROM' at 'Port' wise the settings id!	
- Features	IP-Address	192.168.1.206	
-• IO config	Subnet Mask	255.255.0.0	
	Gateway	0.0.0.0	
	Hostname		
	Domain name		
	DNS-Server1	0.0.0.0	
	DNS-Server2	0.0.0.0	
	Switch IP-Address	192.168.1	
	(S)NTP-Server	0.0.0.0	
	SNTP Update Time (sec, max. 65535) 3600	
	UNDO	ВМІТ	

Figure 60: WBM page "TCP/IP"

Table 41: WBM page "TCP/IP						
Configuration Data						
Entry	Default	Value	Description			
		(example)				
IP address	192.168.1.0	192.168.1.200	Enter IP address			
Subnet mask	255.255.255.0	255.255.255.0	Enter subnet mask			
Gateway	0.0.0.0	0.0.0.0	Enter gateway			
Host name			Enter host name			
Domain name			Enter domain name			
DNS Server1	0.0.0.0	0.0.0.0	Enter IP address of the first DNS server			
DNS Server2	0.0.0.0	0.0.0.0	Enter optional IP address of the second			
			DNS server			
Switch IP-Address	192.168.1	192.168.5	Network address for the configuration of			
			the IP address with DIP switch			
(S)NTP Server	0.0.0.0	0.0.0.0	Enter IP address of the (S)NTP server			
SNTP Update Time	0	0	Enter the delay after which the (S)NTP			
(sec. max. 65535)	0	0	server requests the network time again			

Table 41: WBM page "TCP/IP"

10.4 Port

Use the "Port" HTML page to enable or disable services available via the IP protocol.

	Web-base	ed Management	WAGO Kontaktischnik GnbH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
			_
Navigation	P	ort configuration	
-• Information -• Ethernet -• TCP/IP -• Port	This pag network stored ir take eff hardware	ge is for the configuration of protocols. The configuration an EEPROM and changes ect after the next software ereset.	the is will or
- SNMP			
→ SNMP V3		Port Settings	
-• Watchdog		i ori oettinga	
-• Clock	Protocol	Port	Enabled
- Security	FTP	21	
	SNTP	123	
-• Features	HTTP	80	
-• IO config	SNMP	161, 162	
ー• Web∨isu	Ethernet IP	44818 (TCP), 2222 (UDP) 🔽
	Modbus UDP	502	V
	Modbus TCP	502	
	WAGO Services	6626	
	CoDeSys	2455	
	BootP	68	0
	DHCP	68	0
	use IP from EEPR	UM	0
		UNDO SUBMIT	

Figure 61: WBM page "Port"

Port Settings			
Entry	Entry		Entry
$FTD (D_{ort} 21)$	Enablad		☑ activating "File Transfer Protocol"
	Ellabled		deactivating "File Transfer Protocol"
			☑ activating "Simple Network Time Protocol"
SNTP (Port 123)	Enabled		deactivating "Simple Network Time
	1		Protocol"
HTTP (Port 80)	Enabled	\checkmark	✓ activating "Hypertext Transfer Protocol"
	Linuoitta		deactivating "Hypertext Transfer Protocol"
$\mathbf{CNDAD} \left(\mathbf{D}_{out} 1 \left(1 - 1 \left(2 \right) \right) \right)$	F., .1, 1, .4		✓ activating "Simple Network Management Protocol"
SNMP (Polt 101, 102)	Enabled		deactivating "Simple Network Management Protocol"
Ethernet IP (TCP-Port 44818,	Enchlad		✓ activating ETHERNET/IP protocol
UDP-Port 2222)	Enabled		deactivating ETHERNET/IP protocol
Madhug UDD (Dart 502)	Enabled	\checkmark	☑ activating MODBUS/UDP protocol
Modous ODI (1011 302)			deactivating MODBUS/UDP protocol
Modbus TCP (Port 502)	Enabled	\checkmark	✓ activating MODBUS/TCP protocol
	Lilabicu		□ deactivating MODBUS/TCP protocol
WAGO Services (Port 6626)	Enabled		✓ activating WAGO services
	Lildoled	Ċ	de activating WAGO services
CaDaSara (Dart 2455)	Enchlad	1	☑ activating WAGO-I/O- <i>PRO</i>
CoDeSys (Port 2455)	Enabled	V	deactivating WAGO-I/O-PRO
BootP (Port 68)	Enabled		activating "Boots Trap Protocol"
	Lilabicu	0	O deactivating "Boots Trap Protocol"
DUCD (Dert (9)	Enchlod	0	 activating "Dynamic Host Configuration Protocol"
	Enabled		O deactivating "Dynamic Host Configuration Protocol"
			• activating use of IP address from EEPROM
use IP from EEPROM	Enabled	0	O deactivating use of IP address from EEPROM

Table 42: WBM page "Port"

Note

Alternative IP address assignment!

You can only select the DHCP, BootP and "use IP from EEPROM" settings as an alternative!

10.5 SNMP

On the HTML page "SNMP", you can perform the settings for the Simple Network Management Protocol.

SNMP is a standard for device management within a TCP/IP network. The Simple Network Management Protocol (SNMP) is responsible for transporting the control data that allows the exchange of management information, the status and statistic data between individual network components and a management system.

The fieldbus coupler/controller supports SNMP in versions 1, 2c and 3.

The SNMP of the ETHERNET TCP/IP controller includes the general MIB according to RFC1213 (MIB II).

SNMP is processed via port 161. The port number for SNMP traps (agent messages) is 162.

Note

Enable port 161 and 162 to use SNMP!

Enable ports 161 and 162 in the WBM in menu "port", so that the fieldbus coupler/controller can be reached via SNMP. The port numbers cannot be modified.

Note

Modify parameter via WBM or SNMP objects!

However, parameters that can be set on the html pages can also be changed directly by the appropriate SNMP objects.

Information

Additional Information:

Additional information for SNMP, the Management Information Base (MIB) and traps (event messages via SNMP) may be obtained from chapter "Fieldbus communications" > "Communications protocols" > "SNMP (Simple Network Management Protocol)".

Note that the settings for SNMPV1/V2c and SNMPV3 are separate from each other: The different SNMP versions can be activated or used in parallel or individually on a fieldbus controller.

10.5.1 SNMP V1/V2c

The SNMP version 1/2c represents a community message exchange. The community name of the network community must thereby be specified.

	Web-based Management	O Kontaktiechnik GmbH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
	SNMD Configuration	
Navigation	SNMP Configuration	
- Information	This page is dedicated to the SNMP	
-• Ethernet	configuration. The new configuration is	
Port	take effect after the next software or	
	hardware reset.	
- SNMP V3		
- Watchdog	SNMP Configuration	
- Clock	Name of device 750-881	
- Security	Description WAGO Ethernet 750-881	
- PLC	Physical location LOCAL	
- Features	Contact support@wago.com	
→ IO config		
–• Web∨isu	SNMP v1/v2c Manager Configuration	
	Protocol Enable SNMP V1/V2c 🗹	
	Local Community Name public	
		-
	SNMP v1/v2c Trap Receiver	
	Configuration	
	Trap Receiver 1 0.0.0.0	
	Community Name 1 public	
	Trap Version V1 V2 O	
	Trap Receiver 2 0.0.0.0	
	Community Name 2 public	
	Trap Version V1 V2 O	
	UNDO	

Figure 62: WBM page "SNMP"

SNMP Configuration								
Entry	Value (Default)		Description					
Name of device	750-881		Device name (sysNam	e)				
Description	Programmable Fieldbus Controller ETHERNET 750- 881		Device description (sysDescription)					
Physical location	LOCAL		Location of device (sy	sLocation)				
Contact	support@wago.c	om	E-mail contact address	(sysContact)				
SNMP v1/v2 Manage	er Configuration							
Entry	Value (Default)	Des	scription					
Protocol Enable	SNMP V1/V2c ☑		Activating SNMP Ver Deactivating SNMP-V	rsion 1/2c Version 1/2c				
Local Community Name	<u>public</u>	Use	ed community name					
SNMP v1/v2 Trap R	eceiver Configur	atio	1					
Entry	Value (Default)	Des	scription					
Trap Receiver 1	0.0.0.0	IP a	P address of 1. used SNMP manager					
Community Name 1	<u>public</u>	1. (Community name of the	network community used				
Trop Vargion	V1 •	V1	• V2 O	Activating Traps Version 1				
Trap version	V2 O	V1	○ V2 ●	Activating Traps Version 2				
Trap Receiver 2	0.0.0.0	IP address of 2 . used SNMP manager						
Community Name 2	public	2. (Community name of the	network community used				
Trop Vargian	V1 •	V1	• V2 O	Activating Traps Version 1				
riap version	V2 O	V1	○ V2 ●	Activating Traps Version 2				

Table 43: WBM page "SNMP"

10.5.2 SNMP V3

In SNMP version 3, exchanging messages is user-related. Each device, that knows the passwords set via WBM, may read or write values from the controller. In SNMPv3, user data from SNMP messages can also be transmitted in encoded form. This is why SNMPv3 is often used in safetyrelated networks.

		Wel	o-based	Μ	anage	ment	WAGO G) Kontakttechnik imbH & Co. KG Hansastr. 27 D-32423 Minden www.wago.com
					and the second			
Navigation			SNMF	P C	onfigura	ation		
- Information								
- Ethernet			This page in configuration	is de The	edicated to e new conf	the SNM iguration	1P is	
- TCP/IP			stored in an	EEF	ROM and	changes w	vill	
- Port			take effect	after et	the next	software	or	
- SNMP			'Authenticatic	on Ke	y' and 'Priva	cy Key' hav	ve	
- SNMP V3			to be at least	8 cha	aracters.			
- Watchdog		1						
- Clock			SNMF	⁹ v3	(user ba	ased)		
- Security	1.U	Jser			activate 🗆			
- PLC	Au	thenticat	ion Type		None O	MD5 @	SHA1	0
- Features	Se	curity Au	uthentication Na	ame	SecurityNam	e		
- IO config	Au	thenticat	ion Key		Authenticatio	nKey		
–∙ WebVisu	Pri	vacy En	able		DES 🗹			
	Pri	vacy Ke	у		PrivacyKey			
	No	tificatior	/Trap enable		V3 🗆			
	No	tificatior	I Receiver IP		0.0.0.0			
	2.0	Jser			activate 🗆			
	Au	thenticat	ion Type		None O	MD5 @	SHA1	0
	Se	curity Au	uthentication Na	ame	SecurityNam	e		
	Au	thenticat	ion Key		Authenticatio	nKey		
	Pri	vacy En	able		DES 🗹			
	Pri	vacy Ke	у		PrivacyKey			
	No	tificatior	/Trap enable		V3 🗆			
	No	tificatior	Receiver IP		0.0.0.0			
			U	INDO	SUBMIT			

SNMP v3 (user based)					
Entry	Value (Example)	Description			
1. User / 2. User	activate 🗹	Activating user 1 or 2			
		Deactivating user 1 or 2			
	Nono	None \bullet MD5 \bigcirc SHA1 \bigcirc No encryption of the authentication			
Authentification Type	MD5 O SHA1 O	None \bigcirc MD5 \odot SHA1 \bigcirc Encryption of the authentication with MD5			
	511111	None \bigcirc MD5 \bigcirc SHA1 \textcircled{o} Encryption of the authentication with SHA1			
Security Authentification Name	Security Name	Enter the name, if the "authentification type" MD5 or SHA1 has been selected			
Authentification Key	Authentification Key	Enter the password with at least 8 characters, if "authentification type" MD5 or SHA1 has been selected			
D' E 11		\checkmark Activate the DES encryption of the data			
Privacy Enable	DES 🕑	Deactivate the DES encryption of the data			
Privacy Key	Privacy Key	Enter the password of at least 8 characters in the encryption with DES			
Natification/		\checkmark Activate the notification traps of the SNMP version 3			
Trap enable	V3 🗹	$\Box Deactivate the notification traps of the SNMP version 3$			
Notification Receiver IP	192.168.1.10	IP address of the notification manager			

Two independent SNMPv3 users can be defined and activated via the html page (user 1 and user 2).

10.6 Watchdog

Click the link "Watchdog" to go to a Web site where you can specify the settings for the connection and MODBUS watchdog.

	Web-based Management	50 Kontakttechnik GmbH & Co. KG Hansastr. 27 D-32423 Minden WWW.Wago.com
Navigation	Watchdogs	
Information Ethernet TCP/IP Port SNMP SNMP V3 Watchdog	This page is for the configuration of the watchdogs. The configuration is stored in an EEPROM. Changes of the Connection Time will take effect immediately. Changes of the Modbus Watchdog will take effect after the next software or hardware reset. For more information see the manual.	
- Clock Security	Connection Watchdog	
- PLC	Connection Timeout Value (100ms): 600	
 Features IO config 	UNDO SUBMIT	
—• WebVisu	Modbus Watchdog	
	State Modbus Watchdog: Disabled Watchdog Type : Standard • Alternative • • Watchdog Timeout Value (100ms): 100 Watchdog Trigger Mask (F1 to F16): DxFFFF	
	VVatchdog Trigger Mask (F17 to F32): UXFFFF	

Figure 64: WBM page "Watchdog"

Connection watchdog						
Entry	Default	Description				
Connection Timeout Value (100 ms)	600	Monitoring period for TCP links. After the completion of this period without any subsequent data traffic, the TCP connection is closed.				
Modbus Watchdog						
Entry	Default	Description				
State Modbus Watchdog	Disabled	Enabled – Watchdog is activated Disabled – Watchdog is disabled				
Watchdog Type	Standard •	The set coding mask (watchdog trigger mask) is evaluated to determine whether the watchdog time is reset.				
	Alternative O	The watchdog time is reset by any Modbus/TCP telegram.				
Watchdog Timeout Value (100 ms)	100	Monitoring period for Modbus links. After the completion of this period without receiving a Modbus telegram, the physical outputs are set to "0".				
Watchdog Trigger Mask (F 1 to F16)	0xFFFF	Coding mask for certain Modbus telegrams (Function Code FC1 FC16)				
Watchdog Trigger Mask (F17 to F32)	0xFFFF	Coding mask for certain Modbus telegrams (Function Code FC17 FC32)				

Table 44: WBM page "Watchdog"

10.7 Clock

Specify the settings for the internal real-time clock on the "Clock" HTML page. Here, enter the current time and date and also select standard or daylight saving time.

Note

Reset the internal clock after 6 days without power supply! The internal clock must be reset on initial startup or after 6 days without power. If the clock is not set, the clock begins with the date 01.01.2000 around 0:00 clock with time measurement.

Note

Integrate the function block for converting from winter/summer time!

Switch-over between standard and daylight saving time via Web-based management system is required when synchronizing the controllers in your network using a time server. The controller itself does not automatically execute a change-over between standard and daylight-saving time. The change-over is resolved via function block PrgDaylightSaving, which you must integrate into the WAGO-I/O-*PRO* using the library DaylightSaving.lib. From that point, change-over will be performed automatically, allowing all functions to be executed properly and at the right time.

Note

Error message in WAGO I/O *CHECK* is possible after a power failure! If you are using the software "WAGO-I/O-*CHECK*" after a loss of power has occurred, error messages may be generated. Should this occur, call up the Webbased management system and set the actual time under "Clock". Then, call up the "WAGO-I/O-*CHECK*" program again

Note

Loss of telegrams possible when performing configuration during ongoing operation!

Telegrams may be lost if configuration is performed using WAGO-I/O-*CHECK* while the system is in operation.

Note

Use a WAGO RTC module for time synchronization!! You can use a WAGO 750-640 RTC Module for your node to utilize the actual encoded time (Real-time – RTC) in your higher-level control system.

	Web-based Management	WAGO Kontskittechnik GmbH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
Navigation	Clock configuration	
Information		
-• Ethernet	Configuration Data	
- TCP/IP	Time on device 07:39:30	
- Port	Date (YYYY-MM-DD) 2010-07-22	
- SNMP	Timezone (+/- hour:minute) +1:00 💌	
- SNMP V3	Daylight Saving Time (DST)	
Watchdog	12 hour clock	
- Clock		
 Security 	ONDO BODINIT	
- PLC		
- Features		
- IO config		
⊸ WebVisu		

Figure 65: WBM page "Clock"

Table 45: WBM page "Clock"

Configuration Data							
Entry	Default	Value (example)	Description				
Time on device	Coordinated Universal Time UTC	09:16:41	Set current time				
Date (YYYY-MM-DD)	Date based on UTC	2009-05-06	Set current date				
Time zone (+/- hour)	0	1 (MEZ)	Set time zone offset from the Coordinated Universal Time (UTC)				
Daylight Saving Time	Summer time V	Summar time V	☑ Enable summer time				
(DST)/ Summer Time			Enable winter time				
12 hour clock	12 hour aloak	12 hour aloak	☑ Enable 12-hour display				
			Enable 24-hour display				

10.8 Security

Use the "Security" HTML page with passwords to set up read and/or write access for various user groups to protect against configuration changes.

Note

Passwords can only be changed by "admin" and after software reset! The "admin" user and associated password are required to change passwords. Press the **[Software Reset]** button to restart the software for the setting changes to take effect.

Note

Note password restrictions!

The following restrictions apply for passwords:

- Max. 16 characters
- Letters and numbers only
- No special characters or umlauts

Note

Renew access after software reset!

If you initiate a software reset on this page, then the fieldbus coupler/controller starts with the configurations previously loaded into the EEPROM and the connection to the browser is interrupted.

If you changed the IP address previously, you have to use the changed IP address to access the device from the browser.

You have have not changed the IP address and performed other settings, you can restor the connection by refreshing the browser.

	WAGO Kontaktiteduni Grabh & Co. K Hansastr. 2 D-32423 Minde WWW.Wage.co
Navigation	Security
- Information	This page is intended to disable the basic
- Ethernet	authentication. Additionally you can set
	new passwords for the existing user. The new values are stored in an EEPROM and
- Port	changes will take effect after the next
	software or hardware reset.
- Sivier vo	
- Clock	Webserver Security
Security	Webserver authentification enabled
- PLC	
- Features	
 IO config 	Webserver and FTP User
⊸ WebVisu	configuration
	User: guest 💌 Password:
	Confirm Password:
	Attention: You will lose the connection to the webserver after the software reset, if the IP configuration was changed. Please load the webpage with the proper address in this case again.
	Software Reset

Figure 66: WBM page "Security"

Webserver Security		
Entry	Default	Description
Webserver authentification enabled	I	Enable password protection to access the Web interface
		Disable password protection to access the Web interface
Webserver and FTP User	configuration *	;)
Entry	Default	Description
User	guest	Select admin, guest or user
Password	guest	Enter password
Confirm password		Enter password again to confirm

*) The following default groups exist:

User: admin Password: wago User: guest Password: guest User: user Password: user

10.9 PLC Info

The WBM page "PLC Info" contains information about the current CoDeSys project. First, these information has to be registered in the CoDeSys project under the menu "Project " \rightarrow "Projekt Information ".

	Web-based Management	WAGO Kontakttechnik GmbH & Co. KG Hansastr. 27 D-32423 Minden www.wago.com
Navigation	CoDeSys Info	
Ethernet TCP/IP	This page provides information about the current CoDeSys-Project.	
Port SNMP SNMP V3	Project-Info Title	
-• Watchdog -• Clock	Version Date 14.03.2012 12:56:30 Description	
Security PLC Info PLC	Author ID 348555	
- Features - IO config		
-• Disk Info -• WebVisu		

Fugure 67: WBM page "PLC Info"

nuole 47. White page "i De mite							
Project Info							
Entry	Default value	Value (Example)	Description				
Title		SSL Client Example	Name of project				
Version		1.0.0	Project version				
Date		15.05.2012 08:50:27	Date and Time of the project				
Description		Testclient zum Aufbau von SSL- Verbindungen	Description				
Author		JW	Project author				
ID		70632	Project ID				

Table 47: WBM page "PLC Info"

10.10 PLC

Click the "PLC" link to access a Web site where you can define the PFC functionality settings for your controller.

	• Web	-based Management	WAGO Kontaktischnik GrubH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
Navigation		PLC Configuration	
Information Ethernet TCP/IP Port SNMP SNMP V3		This page is for the configuration of the PLC. The configuration is stored in an EEPROM. Changes of the process image setting will take effect after the next software or hardware reset. All other changes will take effect immediately. For more information see the manual.	
-• Watchdog -• Clock		PLC Features	
→ Security → PLC	Function	Description	Enabled
- Features	Process image	Set outputs to zero, if user program is stopped.	
	WebVisu	Set 'webvisu.htm' as default.	0
- Webvisu		Open 'webvisu.htm' in frame.	0
		Open 'webvisu.htm' in new window.	©
	I/O configuration	Compatible handling for ea-config.xml	
		Insert monitoring entries into ea-config.xml	
		UNDO SUBMIT	

Figure 68: WBM page "PLC"

Note

Return to WBM view via the IP address of the fieldbus controller! The "Webvisu.htm" page does not have any hyperlinks to the other Web sites. To deactivate this starting page function, or to go to other pages using hyperlinks, enter the IP address for your controller and the address for the original starting page in the URL line of your browser with the following syntax:

http://IP address of your controller/webserv/Index.ssi

PLC Featu	PLC Features					
Function	Default		Description			
Process	Set outputs to zero, if user		\checkmark	Activate, if all outputs must be set at zero when stopping the user program		
image	program is stopped			Disable, if all outputs must remain at the last current value when stopping the user program		
WebVisu	Set 'webvisu.htm' as default	0	۲	Activate, if the page "Webvisu.htm" must be opened as starting page when calling up WMB instead of the standard starting page "Status Information"		
			0	Activate, if the standard starting page "Status Information" must be opened when calling up WMB		
	Open 'webvisu.htm' in frame	0	۲	Activate, if the page "Webvisu.htm" must be opened in the same frame		
			0	Activate, if the page "Webvisu.htm" must be opened in another frame		
	Open 'webvisu.htm'		۲	Activate, if the page "Webvisu.htm" must be opened in the same window		
	in new window		0	Activate, if the page "Webvisu.htm" must be opened in another window		

PLC Features						
Function	Default	Description				
		Activate, if the to the outputs of file "ea-config Here, note whe already been c configuration is table). The current pro- website "IO co- channels. Disable, if the the outputs of file already been c configuration is table)	e write authorizations of all bus terminals b .xml". ether a control system reated and, if so, who is correct or incorrec occess values are disp onfig", in addition to write authorizations all bus terminals of t ether a control system reated and, if so, who is correct or incorrec	s must be assigned based on an existing in configuration has ether this t (see the following layed on the the displayed data must be assigned to he PLC in configuration has ether this t (see the following		
			I/O configuration	I/O configuration		
I/O configu- ration	Compatible		(function activated)	standard setting):		
	handling for ea-config.xml	<u>No</u> control system configuration has been created in the project	Writing privileges to the outputs of all modules are assigned on the basis of an existing ea- config.xml. The ea-config.xml file must be completely error-free; otherwise the writing privileges for all modules will be assigned to the standard fieldbus.	The outputs for all modules are assigned to the PLC. Any ea-config.xml file that may already be present is ignored and overwritten.		
		<u>Correct</u> control system configuration has been created in the project	Writing privileges to the module outputs is taken from the control system configuration. A corresponding ea-config.xml file is generated in the file system.			
		Incorrect control system configuration has been created in the project	The standard fieldbus is privileges to the outputs modules.	granted writing of all the		
	Insert monitoring	Activate to also the html page" for the display	o display the current IO config" ed data channels.	process values on		
	ea-config.xml	Disable, if no p html page "IO	process values must config".	be displayed on the		

— 11				
Table:	WBM	page	"PLC"	

10.11 Features

Use the "Features" HTML page to enable or disable additional functions.

	Web-based Management	WAGO Kontaktiedmik GmbH & Co. KG Hansastr. 27 D-32423 Minden <u>www.wago.com</u>
Navigation	Features	
Information Ethernet TCP/IP Port SNMP	This page is for the configuration of additional features. The configuration is stored in an EEPROM and changes will take effect after the next software or hardware reset.	
SNMP V3 Watchdog Clock Security	Additional functions Autoreset on system error Image: Comparison of the system error BootP Request before Static-IP Image: Comparison of the system error	
→ Features → IO config → WebVisu	UNDO SUBMIT	

Figure 69: WBM page "Features"

Additional functions				
Entry	Default	Description		
Autoreset on		enables an automatic software reset to be conducted when a system error occurs		
system error		disables an automatic software reset to be conducted when a system error occurs		
BootP Request before Static-IP		Automatically set the static IP address enabled. For this configuration, the fieldbus coupler/ controller uses a statically configured IP address if the request via BootP fails.		
		Automatically set the static IP address disabled. For this configuration, the IP address request via BootP is repeated in the event of error.		

10.12 I/O Config

Click the link "I/O config" to view the configuration and/or write access privileges for the outputs of your fieldbus node.

The node structure created using the "WAGO-I/O-*PRO* I/O Configurator" hardware configuration tool is displayed in the window. If no modules are shown in this window, no hardware configuration and, thus, no allocation of write access privileges have been assigned. In this case, the handling defined at the Web site "PLC" by the function "I/O configuration - Compatible handling for eaconfig.xml" will be applied to assign the write privileges for all outputs either to the standard fieldbus, or to the PLC.

Figure 70: WBM page "I/O Config"

Information

Additional Information

For more detailed information about the WAGO-I/O-*PRO* I/O Configurator, refer to the Section "Startup of Fieldbus Node".

When the function "I/O configuration Insert monitoring entries into eaconfig.xml" is also activated at the Web site "PLC", the current process values will also be shown for the data channels that are displayed.

Configuration details				
Entry			Value (Example)	Description
Number of	modules on termina	albus	5	Number of I/O modules (hardware)
Number of modules in I/O configuration			5	Number of I/O modules in the hardware configuration of the I/O
I/O config	uration file			
Entry	Value (Example)	Description		
Pos	1	Position of the I/O module in the hardware		
Module	750-4xx M001Ch1 M001Ch2	Product number of the integrated I/O module M = module, 001 = position 1, Ch1 = channel 1 M = module, 002 = position 2, Ch2 = channel 2		
Туре	2DI	I/O module type, e.g. 2 DI (2 Channel Digital Input Module)		
Mapping	Fieldbus 3	Mapping via PLC, fieldbus 1 etc. (Entries depend on the coupler/controller, see WAGO-I/O- <i>PRO</i> under control parameters/module parameters)		

Table 50: WBM page "I/O configuration"

Note

Enter I/O modules in the I/O Configurator!

Enter the I/O modules used in the I/O configurator of WAGO-I/O-*PRO*. Here, open the **Control Configuration** in the **Resources** register and add your I/O modules to the I/O module figure.

The added I/O modules must match the hardware in sequence and quantity. The entries "Number of modules on terminalbus" and "Number of modules in I/O configuration" on the html page "PLC" serve as control.

10.13 WebVisu

The visualization of your programmed application is displayed on the html page "WebVisu", provided you have created it with the visualization editor in WAGO-I/O-*PRO* and loaded it into the controller.

Perform the following settings in WAGO-I/O-*PRO*, so that an html page with your visualization is automatically created at the transmission of your project:

- 1. Double click to open the **Target System Settings** in the **Resource** register.
- 2. Open the **Visualization** register.
- 3. Select the **Web Visualization** option with a hatch mark.
- 4. Confirm with **OK**.

A link is then created to this html page "WebVisu" by the Web-based Management system. You can set the html page "WebVisu" as the starting page.

- 1. Call up the page "PLC" in the web-based Management-System.
- a.) To set the HTML page "WebVisu" as the start page, use the function WebVisu Set 'webvisu.htm' as default. When accessing the webbased management system, the "WebVisu" page is opened instead of the default WBM start page "Information". However, the links to switch to the other WBM pages is then no longer available.

Note

Returning to the "WebVisu.htm" page is only possible via the IP address of the fieldbus controller!

The "Webvisu.htm" page does not have any hyperlinks to other Web sites. To deactivate the starting page function again, or to go to other pages using hyperlinks, enter the IP address for your controller and the address for the original starting page in the URL line of your browser with the following syntax: http://IP address of your controller/webserv/Index.ssi.

- b.) To call up the the HTML page "WebVisu" in an eternal window (default setting), use the function **WebVisu Open 'webvisu.htm' in new window**. Clicking on the "WebVisu" link opens a new window that displays the HTML page with visualization of your configured application. The links to switch to the other WBM pages are still available with this setting.
- c) To call up the HTML page "WebVisu" on the WBM site directly, use the function **WebVisu – Open 'webvisu.htm' in frame**. Clicking on the "WebVisu" link opens the HTML page with visualization of your configured application in a frame in the WBM window directly. The

links to switch to the other WBM pages are still available with this setting.

Web-based Management	WAGO Kontaktischnik GmbH & Co. KG Hansastr. 27 D-32423 Minden www.wago.com
August Area and a	
WebYisu - Microsoft Internet Explorer Datei Bearbeiten Ansicht Favoriten Extras ?	
WebVisu	
There is currently no WebVisu stored in this controller.	
T(P(
	*
	ntranet //
● IO config ● WebVisu	

Figure 71: WBM page "WebVisu"

11 Diagnostics

11.1 LED Signaling

For on-site diagnostics, the fieldbus controller has several LEDs that indicate the operational status of the controller or the entire node (see following figure).

Figure 72: Display Elements

The diagnostics displays and their significance are explained in detail in the following chapter.

The LEDs are assigned in groups to the various diagnostics areas:

Diagnostics area	LEDs
Fieldbus status	 LINK ACT Port 1 LINK ACT Port 2 MS NS
Node status	• I/O • USR
Status Supply Voltage	 A (system supply) B (field supply)

Table 51: LED assignment for diagnostics

11.1.1 Evaluating Fieldbus Status

The health of the ETHERNET Fieldbus is signaled through the top LED group ('LINK ACT 1, 2', 'MS', und 'NS').

The two-colored LEDs 'MS' (module status) and 'NS' (network status) are solely used by the Ethernet/IP protocol. These two LEDs conform to the Ethernet/IP specifications.

	Maaning	Solution						
LED Status	Meaning	Solution						
LINK AC	LINK ACT 1, 2							
green	The fieldbus node is connected to the physical network.	-						
green flashing	The fieldbus node sends and receives Ethernet telegrams	-						
off	The fieldbus node is not connected to the physical network.	1. Check the fieldbus cable.						
MS								
green	Normal operation	-						
green flashing	The system is not yet configures	-						
red	The system indicates a not remediable error	 Restart the device by turning the power supply off and on again. If the error still exists, please contact the I/O support. 						
red/green flashing	Self test	-						
off	No system supply voltage	1. Check the supply voltage.						
NS								
green	At least one connection (MODBUS/TCP or Ethernet/IP) is developed (also connection to the Message rout applies)	-						
grün flashing	No connection (MODBUS/TCP or Ethernet/IP).	-						
red	The system indicates a double IP- address in the network	1. Use an IP address that is not used yet.						
red flashing	At least one connection (MODBUS/TCP or Ethernet/IP) announced a Timeout, where the controller functions as target.	 Restart the device by turning the power supply off and on again. Develop a new connection. 						
red/green flashing	Self test	-						
off	No IP address is assigned to the system.	1. Assign to the system an IP address for example by BootP or DHCP.						

Table 52: Fieldbus diagnostics – solution in event of error

11.1.2 Evaluating Node Status - I/O LED (Blink Code Table)

The communication status between fieldbus coupler/controller is indicated by the I/O LED.

LED Status	Meaning	Solution
I/O		
green	The fieldbus node is operating correctly.	Normal operation.
orange flashing	The internal data bus is initialized, 1-2 se- conds of rapid flashing indicate start-up.	-
red	Controller hardware defect	Replace the fieldbus coupler/controller.
red	General internal bus error	Note the following blinking sequence.
flashing		
red cyclical flashing	Up to three successive blinking sequences indicate internal data bus errors. There are short intervals between the sequences.	Evaluate the blinking sequences based on the following blink code table. The blinking indicates an error message comprised of an error code and error argument.
off	No data cycle on the internal bus.	The fieldbus coupler/controller supply is off.

Table 53: Node status diagnostics - solution in event of error

Device boot-up occurs after turning on the power supply. The I/O LED is orange.

After a trouble-free start-up, the I/O LED is green.

In the event of an error, the I/O LED continues to blink red. Blink codes indicate detailed error messages. An error is indicated cyclically by up to 3 blinking sequences.

After elimination of the error, restart the node by turning the power supply of the device off and on again.

Figure 73: Node status - I/O LED signaling

1st flash sequence (ca. 10 Hz)	Break	2nd flash sequence (ca. 1 Hz)	Break	3rd flash sequence (ca. 1 Hz)
(Introduction of the error indication)		Error code x (x = Number of flash cycles)		Error argument y (y = Number of flash cycles)

Figure 74: Error message coding

Example of a module error:

- The I/O LED starts the error display with the first blinking sequence (approx. 10 Hz).
- After the first break, the second blinking sequence starts (approx. 1 Hz): The I/O LED blinks four times. Error code 4 indicates "data error internal data bus".
- After the second break, the third blinking sequence starts (approx. 1 Hz): The I/O LED blinks twelve times. Error argument 12 means that the internal data bus is interrupted behind the twelfth I/O module.

The thirteenth I/O module is either defective or has been pulled out of the assembly.

Error code 1: "Hardware and configuration error"				
Error	Error Description	Solution		
Argument	•			
1	Overflow of the internal buffer memory for the attached I/O modules.	 Turn off the power for the node. Reduce the number of I/O modules and turn the power supply on again. If the error persists, replace the fieldbus controller. 		
2	I/O module(s) with unknown data type	 Determine the faulty I/O module by first turning off the power supply. Plug the end module into the middle of the node. Turn the power supply on again. - LED continues to flash? - Turn off the power supply and plug the end module into the middle of the first half of the node (toward the fieldbus controller). - LED not flashing? - Turn off the power and plug the end module into the middle of the second half of the node (away from the fieldbus controller). Turn the power supply on again. Repeat the procedure described in step 4 while halving the step size until the faulty I/O module is detected. Replace the faulty I/O module. Inquire about a firmware update for the fieldbus controller. 		
3	Invalid check sum in the parameter area of the fieldbus controller.	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 		
4	Fault when writing in the serial EEPROM.	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 		
5	Fault when reading the serial EEPROM	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 		
6	The I/O module configuration after AUTORESET differs from the configuration determined the last time the fieldbus controller was powered up.	 Restart the fieldbus controller by turning the power supply off and on. 		
7	Invalid hardware- firmware combination.	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 		

Table 54: Blink code- table for the I/O LED signaling, error code 1

ſ	able 54: Blink	code- table	for the I/O	LED signaling,	error code 1

Error code 1: "Hardware and configuration error"			
Error	Error Description	Solution	
Argument			
8	Timeout during serial EEPROM access.	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 	
9	Bus controller initialization error	 Turn off the power supply for the node. Replace the fieldbus controller. Turn the power supply on again. 	
10	Buffer power failure real-time clock (RTC)	 Set the clock. Maintain the power supply of the fieldbus controller for at least 15 minutes in order to charge the Goldcap capacitor. 	
11	Fault during read access to the real- time clock (RTC)	 Set the clock. Maintain the power supply of the fieldbus controller for at least 15 minutes in order to charge the Goldcap capacitor. 	
12	Fault during write access to the real- time clock (RTC)	 Set the clock. Maintain the power supply of the fieldbus controller for at least 15 minutes in order to charge the Goldcap capacitor. 	
13	Clock interrupt fault	 Set the clock. Maintain the power supply of the fieldbus controller for at least 15 minutes in order to charge the Goldcap capacitor. 	
14	Maximum number of gateway or mailbox modules exceeded	 Turn off the power for the node. Reduce the number of corresponding modules to a valid number. 	

Table 55: Blink code table for the I/O LED signaling, error code 2

Error code 2: -not used-			
Error Argument	Error Description	Solution	
_	Not used	_	

Error code 3: "Protocol error, internal bus"			
Error	Error Description	Solution	
Argument			
-	Internal data bus communication is faulty, defective module cannot be identified.	 Are passive power supply modules (750-613) located in the node? - Check that these modules are supplied correctly with power. Determine this by the state of the associated status LEDs. Are all modules connected correctly or are there any 750-613 Modules in the node? - Determine the faulty I/O module by turning off the power supply. Plug the end module into the middle of the node. Turn the power supply on again. - LED continues to flash? - Turn off the power supply and plug the end module into the middle of the fieldbus controller). LED not flashing? - Turn off the power and plug the end module into the middle of the second half of the node (away from the fieldbus controller). Turn the power supply on again. Repeat the procedure described in step 4 while halving the step size until the faulty I/O module. Inquire about a firmware update for the fieldbus controller. 	

Table 56: Blink code table for the I/O LED signaling, error code 3
Error code 4: "Physical error, internal bus"		
Error	Error Description Solution	
Argument		
<u>-</u>	Internal bus data transmission error or interruption of the internal data bus at the fieldbus controller	 Turn off the power supply to the node. Plug in an end module behind the fieldbus controller. Turn the power supply on. Observe the error argument signaled. Is no error argument indicated by the I/O LED? - Replace the fieldbus controller. Is an error argument indicated by the I/O LED? - Identify the faulty I/O module by turning off the power supply. Plug the end module into the middle of the node. Turn the power supply on again. - LED continues to flash? - Turn off the power and plug the end module into the middle of the fieldbus controller). - LED not flashing? - Turn the power and plug the end module into the middle of the second half of the node (away from the fieldbus controller). Turn the power supply on again. Repeat the procedure described in step 6 while halving the step size until the faulty I/O module. If there is only one I/O module on the fieldbus controller
		and the LED is flashing, either the I/O module or fieldbus
n*	Interruption of the internal data bus behind the nth bus module with process	 Turn off the power supply to the node. Replace the (n+1) I/O module containing process data. Turn the power supply on.
	data	1 TOT TOT T

Table 57: Blink code table for the I/O LED signaling, error code 4

* The number of light pulses (n) indicates the position of the I/O module.

I/O modules without data are not counted (e.g., supply modules without diagnostics)

Table 58: Blink code table for the I/O LED signaling	g, error code 5
--	-----------------

Error code 5: "Initialization error, internal bus"		
Error	Error Description	Solution
Argument		
n*	Error in register communication during internal bus initialization	 Turn off the power supply to the node. Replace the (n+1) I/O module containing process data. Turn the power supply on.

* The number of light pulses (n) indicates the position of the I/O module.

I/O modules without data are not counted (e.g., supply modules without diagnostics)

Error code 6: "Fieldbus specific errors"				
Error	Error description	Solution		
Argument				
1	Invalid MACID	 Turn off the power supply of the node. Exchange fieldbus controller. Turn the power supply on again. 		
2	Ethernet Hardware initialization error	 Restart the fieldbus controller by turning the power supply off and on again. If the error still exists, exchange the fieldbus controller. 		
3	TCP/IP initialization error	 Restart the fieldbus coupler by turning the power supply off and on again. If the error still exists, exchange the bus coupler. 		
4	Network configuration error (no IP Address)	1. Check the settings of BootP server.		
5	Application protocol initialization error	 Restart the fieldbus coupler by turning the power supply off and on again. If the error still exists, exchange the bus coupler. 		
6	Process image is too large	 Turn off the power supply of the node. Reduce number of I/O modules 		
7	Double IP address in network	 Change configuration. Use another IP address, which is not yet present in network. Restart the fieldbus coupler by turning the power supply off and on again. 		
8	Error when building the process image	 Turn off the power supply of the node. Reduce number of I/O modules Restart the fieldbus coupler by turning the power supply off and on again. If the error still exists, exchange the bus coupler. 		
9	Error with mapping between bus modules and fieldbus	1. Check EA-Config.xml file on the fieldbus controller		

Table 59: Blink code- table for the I/O LED signaling, error code 6

Table 60: Blink code table for the 'I/O' LED signaling, error code 7...9

Error code 79: -not used-		
Error	Error Description	Solution
Argument	•	
-	Not used	

Error code 10: "PLC program fault"			
Error Argument	Error Description	Solution	
1	Error when implementing the PFC run time system	 Restart the fieldbus controller by turning the power supply off and on again. If the error still exists, please contact the I/O Support. 	
2	Error when generating the PFC inline code	 Restart the fieldbus controller by turning the power supply off and on again. If the error still exists, please contact the I/O Support. 	
3	An IEC task exceeded the maximum running time or the sampling interval of the IEC task could not be kept (Watchdog)	 Check the task configuration concerning the adjusted sampling intervals and watchdog times. 	
4	PFC Web-Visualization initialization error	 Restart the fieldbus controller by turning the power supply off and on again. If the error still exists, please accomplish a reset (origin) in WAGO-I/O-<i>PRO</i>. Compile the project again. Transfer the project to the controller. 	
5	Error when synchronizing the PLC configuration with the internal data bus	 Check the information of the connected modules in the PLC configuration of WAGO-I/O-PRO. Compare this information with the modules that are actually connected. Compile the project again. Transfer the project to the controller. 	

Table 61: Blink code table for the 'I/O' LED signaling, error code 10

Table 62: Blink code table for the 'I/O' LED signaling, error code 11

Error code 11: "Gateway-/Mailbox I/O module fault"			
Error Argument	Error Description	Solution	
1	Maximum number of Gateway modules exceeded	 Turn off the power supply of the node. Reduce number of Gateway modules. Turn the power supply on again. 	
2	Maximum size of Mailbox exceeded	 Turn off the power supply of the node. Reduce the Mailbox size. Turn the power supply on again. 	
3	Maximum size of process image exceeded due to the put Gateway modules	 Turn off the power supply of the node. Reduce the data width of the Gateway modules. Turn the power supply on again. 	

* The number of blink pulses (n) indicates the position of the I/O module.

I/O modules without data are not counted (e.g. supply module without diagnosis)

11.1.2.1 USR LED

The bottom indicator LED ("USR") is provided for visual output of information.

Control of the LED from the application program is conducted using the functions from the WAGO-I/O-PRO library "Visual.lib."

11.1.3 Evaluating Power Supply Status

The power supply unit of the device has two green LEDs that indicate the status of the power supply.

LED 'A' indicates the 24 V supply of the coupler.

LED 'B' or 'C' reports the power available on the power jumper contacts for field side power.

LED Status	Meaning	Solution
Α		
Green	Operating voltage for the system is available.	-
Off	No power is available for the system	Check the power supply for the system (24V and 0V).
B or C		
Green	The operating voltage for power jumper contacts is available.	-
Off	No operating voltage is available for the power jumper contacts.	Check the power supply for the power jumper contacts (24V and 0V).

Table 63: Power supply status diagnostics - solution in event of error

11.2 Fault Behavior

11.2.1 Loss of Fieldbus

A fieldbus and, hence, a link failure is recognized when the set reaction time for the watchdog expires without initiation by the higher-order control system. This may occur, for example, when the Master is switched off, or when there is a disruption in the bus cable. An error at the Master can also result in a fieldbus failure. No connection via ETHERNET.

The MODBUS watchdog monitors the ongoing MODBUS communication via MODBUS protocol. A fieldbus failure is signaled by the red "I/O" LED lighting up, provided the MODBUS watchdog has been configured and activated.

Fieldbus monitoring independently of a certain protocol is possible using the function block 'FBUS_ERROR_INFORMATION' in the library "Mod_com.lib". This checks the physical connection between modules and the controller and assumes evaluation of the watchdog register in the control system program. The I/O bus remains operational and the process images are retained. The control system program can also be processed independently.

N	FBUS_ERROR_INFORMATION
R	FBUS_ERROR
R	ERROR

Figure 75: Function block for determining loss of fieldbus, independently of protocol

'FBUS_ERROR' (BOOL)	= FALSE = TRUE	= no fault = loss of field bus
'ERROR' (WORD)	= 0 = 1	= no fault = loss of field bus

The node can be put into a safe status in the event of a fieldbus failure with the aid of these function block outputs and an appropriately programmed control system program.

Information

Loss of fieldbus detection through MODBUS protocol:

For detailed information about the watchdog register, refer to Section "MODBUS Functions", in particular Section "Watchdog (Fieldbus failure)".

Protocol-independent detection of loss of fieldbus:

The library 'Mod_com.lib' with function block

'FBUS_ERROR_INFORMATION' is normally included in the setup for the WAGO-I/O-PRO. You can integrate the library via register "Resources" at the bottom on the left of the workspace. Click **Insert** and then **Other libraries**. The Mod_com.lib is located in folder C:\Programme\ WAGO Software\CoDeSys V2.3\Targets\WAGO\Libraries\32_Bit

11.2.2 Internal Data Bus Failure

I/O LED indicates an internal bus failure.

I/O LED flashed red:

When an internal data bus failure occurs, the fieldbus controller generates an error message (error code and error argument).

An internal data bus failure occurs, for example, if an I/O module is removed. If the error occurs during operation, the output modules operate as they do during an internal data bus stop.

If the internal data bus error is resolved, the controller starts up after turning the power off and on similar to that of a normal start-up. The process data is transmitted again and the outputs of the node are set accordingly.

If the 'KBUS_ERROR_INFORMATION' function block is evaluated in the control program, then the 'ERROR', 'BITLEN', 'TERMINALS' and 'FAILADDRESS' output values are relevant.

'ERROR'	= FALSE ('BITLEN' 'TERMINALS'	= No fault= Bit length of the internal bus shift register= Number of I/O modules)
'ERROR'	= TRUE ('BITLEN' 'TERMINALS' 'FAILADRESS'	 = Internal Bus Error = 0 = 0) = Position of the I/O module after which the internal bus interruption arose, similar to the flashed error argument of the I/O LED

12 Fieldbus Communication

Fieldbus communication between master application and a WAGO fieldbus coupler/controller based on the ETHERNET standard normally occurs via an implemented fieldbus-specific application protocol.

Depending on the application, this can be e.g., MODBUS/TCP (UDP), EtherNet/IP, BACnet/IP, KNXnet/IP, PROFINET, SERCOS III or other.

In addition to the ETHERNET standard and the fieldbus-specific application protocol, there are also other communications protocols important for reliable communication and data transmission and other related protocols for configuring and diagnosing the system implemented in the WAGO fieldbus coupler/controller based on ETHERNET.

These protocols are explained in more detail in the other sections.

12.1 Implemented Protocols

12.1.1 Communication Protocols

12.1.1.1 IP (Internet Protocol)

The Internet protocol divides datagrams into segments and is responsible for their transmission from one network subscriber to another. The stations involved may be connected to the same network or to different physical networks which are linked together by routers.

Routers are able to select various paths (network transmission paths) through connected networks, and bypass congestion and individual network failures. However, as individual paths may be selected which are shorter than other paths, datagrams may overtake each other, causing the sequence of the data packets to be incorrect.

Therefore, it is necessary to use a higher-level protocol, for example, TCP to guarantee correct transmission.

IP Packet

In addition to the data units to be transported, the IP data packets contain a range of address information and additional information in the packet header.

Table 64: IP Packet

IP Header	IP Data	

The most important information in the IP header is the IP address of the transmitter and the receiver and the transport protocol used.

IP Addresses

To allow communication over the network each fieldbus node requires a 32 bit Internet address (IP address).

Note

IP Address must be unique!

For error free operation, the IP address must be unique within the network.

As shown below there are various address classes with net identification (net ID) and subscriber identification (subscriber ID) of varying lengths. The net ID defines the network in which the subscriber is located. The subscriber ID identifies a particular subscriber within this network.

Networks are divided into various network classes for addressing purposes:

• Class A: (Net ID: Byte 1, Host ID: Byte 2... Byte 4)

Table 65: Network Class A

e. g.	101 .	. 16	. 232	. 22
(01100101	00010000	11101000	00010110
0	Net ID	Host ID		

The highest bit in Class A networks is always '0'. This means the highest byte can be in a range of 0 0000000' to '0 1111111'.

Therefore, the address range of a Class A network in the first byte is always between 0 and 127.

• Class B: (Net ID: Byte 1 ... Byte 2, Host ID: Byte 3... Byte 4)

Table 66: Network Class B

e. g.	181	. 16	. 232	. 22
	10110101	00010000	11101000	00010110
10]	Net ID	Hos	t ID

The highest bits in Class B networks are always '10'. This means the highest byte can be in a range of 10 000000' to '10 111111'.

Therefore, the address range of Class B networks in the first byte is always between 128 and 191.

• Class C: (Net ID: Byte 1 ... Byte 3, Host ID: Byte 4)

Table 67: Network Class C

e. g.	201	. 16	. 232	. 22
	11000101	00010000	11101000	00010110
110	0 Net ID Host ID		Host ID	

The highest bits in Class C networks are always '110'. This means the highest byte can be in a range of '110 00000' to '110 11111'.

Therefore, the address range of Class C networks in the first byte is always between 192 and 223.

• Additional network classes (D, E): are only used for special tasks.

Key Data

Table 68: Key Data Class A, B and C

Network Class	Address range ofPossible number of		umber of
	the subnetwork	Networks	Hosts per Network
Class A	1.XXX.XXX.XXX 126.XXX.XXX.XXX	127 (2^7)	Approx. 16 Million (2^{24})
Class B	128.000.XXX.XXX 191.255.XXX.XXX	Approx. 16 Thousand (2^{14})	Ca. 65 Thousand (2^{16})
Class C	192.000.000.XXX 223.255.255.XXX	Approx. 2 Million (2^{21})	254 (2^8)

Each WAGO ETHERNET fieldbus coupler or controller can be easily assigned an IP address via the implemented BootP protocol. For small internal networks we recommend selecting a network address from Class C.

Note

Do not set IP addresses to 0.0.0.0 or 255.255.255.255!

Never set all bits to equal 0 or 1 in one byte (byte = 0 or 255). These are reserved for special functions and may not be allocated. Therefore, the address 10.0.10.10 may not be used due to the 0 in the second byte.

If a network is to be directly connected to the Internet, only registered, internationally unique IP addresses allocated by a central registration service may be used. These are available from Inter*NIC* (International Network Information Center).

Note

Internet access only by the authorized network administrator! Direct connection to the Internet should only be performed by an authorized network administrator and is therefore not described in this manual.

Subnets

To allow routing within large networks a convention was introduced in the specification RFC 950. Part of the Internet address, the subscriber ID is divided up again into a subnetwork number and the station number of the node. With the aid of the network number it is possible to branch into internal subnetworks within the partial network, but the entire network is physically connected together. The size and position of the subnetwork ID are not defined; however, the size is

dependent upon the number of subnets to be addressed and the number of subscribers per subnet.

1			8	16	24	32
1	0	•••	Network ID	Subnet ID	Hos	it ID

Subnet Mask

A subnet mask was introduced to encode the subnets in the Internet. This involves a bit mask, which is used to mask out or select specific bits of the IP address. The mask defines the subscriber ID bits used for subnet coding, which denote the ID of the subscriber. The entire IP address range theoretically lies between 0.0.0.0 and 255.255.255.255. Each 0 and 255 from the IP address range are reserved for the subnet mask.

The standard masks depending upon the respective network class are as follows:

• Class A Subnet mask:

Table 70: Subnet mask for Class A network			
255	.0	.0	.0

• Class B Subnet mask:

Table 71: Subnet mask for Class B network

255	.255	.0	.0

• Class C Subnet mask:

Table 72: Subnet mask for Class C network

255	.255	.255	.0

Depending on the subnet division the subnet masks may, however, contain other values beyond 0 and 255, such as 255.255.255.128 or 255.255.248.

Your network administrator allocates the subnet mask number to you.

Together with the IP address, this number determines which network your PC and your node belongs to.

The recipient node, which is located on a subnet initially, calculates the correct network number from its own IP address and the subnet mask.

Only then does it check the node number and delivers the entire packet frame, if it corresponds.

IP address	172.16.233.200	10101100 00010000 11101001 11001000
Subnet mask	255.255.255.128	11111111 11111111 11111111 10000000
Net ID	172.16.0.0	10101100 00010000 0000000 00000000
Subnet ID	0.0.233.128	0000000 0000000 11101001 10000000
Host ID	0.0.0.72	0000000 0000000 0000000 01001000

Table 73: Example for an IP address from a Class B network

Note

Specification of the network mask necessarily!

Specify the network mask defined by the administrator in the same way as the IP address when installing the network protocol.

Gateway

The subnets of the Internet are normally connected via gateways. The function of these gateways is to forward packets to other networks or subnets.

This means that in addition to the IP address and network mask for each network card, it is necessary to specify the correct IP address of the standard gateway for a PC or fieldbus node connected to the Internet. You should also be able to obtain this IP address from your network administrator.

The IP function is limited to the local subnet if this address is not specified.

RAW IP

Raw IP manages without protocols such as PPP (point-to-point protocol). With RAW IP, the TCP/IP packets are directly exchanged without handshaking, thus enabling the connection to be established more quickly.

However, the connection must beforehand have been configured with a fixed IP address. The advantages of RAW IP are high data transfer rate and good stability.

IP Multicast

Multicast refers to a method of transmission from a point to a group, which is a point-to-multipoint transfer or multipoint connection. The advantage of multicast is that messages are simultaneously transferred to several users or closed user groups via one address.

IP multicasting at the Internet level is realized with the help of the Internet Group Message Protocol IGMP; neighboring routers use this protocol to inform each other on membership to the group.

For distribution of multicast packets in the sub-network, IP assumes that the datalink layer supports multicasting. In the case of Ethernet, you can provide a packet with a multicast address in order to send the packet to several recipients with a single send operation. Here, the common medium enables packets to be sent simultaneously to several recipients. The stations do not have to inform each other on who belongs to a specific multicast address – every station physically receives every packet. The resolution of IP address to Ethernet address is solved by the use of algorithms, IP multicast addresses are embedded in Ethernet multicast addresses.

12.1.1.2 TCP (Transmission Control Protocol)

As the layer above the Internet protocol, TCP (Transmission Control Protocol) guarantees the secure transport of data through the network.

TCP enables two subscribers to establish a connection for the duration of the data transmission. Communication takes place in full-duplex mode (i.e., transmission between two subscribers in both directions simultaneously).

TCP provides the transmitted message with a 16-bit checksum and each data packet with a sequence number.

The receiver checks that the packet has been correctly received on the basis of the checksum and then sets off the sequence number. The result is known as the acknowledgement number and is returned with the next self-sent packet as an acknowledgement.

This ensures that the lost TCP packets are detected and resent, if necessary, in the correct sequence.

TCP Data Packet

The packet header of a TCP data packet is comprised of at least 20 bytes and contains, among others, the application port number of the transmitter and the receiver, the sequence number and the acknowledgement number.

The resulting TCP packet is used in the data unit area of an IP packet to create a TCP/IP packet.

TCP Port Numbers

TCP can, in addition to the IP address (network and subscriber address), respond to a specific application (service) on the addressed subscriber. For this the applications located on a subscriber, such as a web server, FTP server and others are addressed via different port numbers. Well-known applications are assigned fixed ports to which each application can refer when a connection is built up (Examples: Telnet Port number: 23, http Port number: 80). A complete list of "standardized services" is contained in the RFC 1700 (1994) specifications.

12.1.1.3 UDP (User Datagram Protocol)

The UDP protocol, like the TCP protocol, is responsible for the transport of data. Unlike the TCP protocol, UDP is not connection-orientated; meaning that there are no control mechanisms for the data exchange between transmitter and receiver. The advantage of this protocol is the efficiency of the transmitted data and the resulting higher processing speed.

12.1.2 Configuration and Diagnostics Protocols

12.1.2.1 BootP (Bootstrap Protocol)

The "Bootstrap Protocol" (BootP) can be used to assign an IP address and other parameters to the fieldbus coupler/controller in a TCP/IP network. Subnet masks and gateways can also be transferred using this protocol. Protocol communication is comprised of a client request from the fieldbus coupler or controller and a server response from the PC.

A broadcast request is transmitted to Port 67 (BootP server) via the protocol that contains the hardware address (MAC ID) for the fieldbus coupler or controller.

The BootP server then receives this message. The server contains a database in which the MAC ID and IP addresses are assigned to one another. When a MAC address is found a broadcast reply is transmitted via the network.

The fieldbus coupler/controller "listens" at the specified Port 68 for a response from the BootP server. Incoming packets contain information such as the IP address and the MAC address for the fieldbus coupler/controller. A fieldbus coupler/controller recognizes by the MAC address that the message is intended for that particular fieldbus coupler/controller and accepts the transmitted IP address into its network.

Note

IP addresses can be assigned via BootP under Windows and Linux! You can use WAGO-BootP-Server to assign an IP address under the Windows and Linux operating systems. You can also use any other BootP server besides WAGO-BootP-Server. You can also use any other BootP server besides the WAGO-BootP-Server.

Information

ľ

More information about WAGO-BootP-Server

The process for assigning addresses using WAGO-BootP-Server is described in detail in the section "Commissioning Fieldbus Node".

The BootP Client assists in the dynamic configuration of the network parameters: The ETHERNET TCP/IP fieldbus controller has a BootP client that supports the following options in addition to the default "IP address" option:

T 11

- 4 - D

Option	Meaning
[OPT1] Subnet mask	32-bit address mask that displays which bits of the IP address identify the network and which identify the network stations.
[OPT2] Time zone	Time difference between the local time and the UTC (Universal Time Coordinated).
[OPT3] Gateway	IP address of the router that permits access to other networks.
[OPT6] DNS server	IP address of the name servers that converts a name into an IP address. Up to 2 DNS servers can be configured.
[OPT12] Host name	The name of the host is the unique name of a computer in a network. The host name can contain up to 32 characters.
[OPT15] Domain name	The name of the domain is the unique name of a network. The domain name can contain up to 32 characters.
[OPT42] NTP server	IP address of the Network Time Server. When assigning an NTP server, the SNTP client is automatically enabled in the coupler.

The "Features" WBM page can also be used to select the "BootP Request before static IP" option. After the restart, 5 BootP queries are sent. If there is no response to any of these queries, the fieldbus coupler/controller tries to configure itself with the IP parameters saved in the EEPROM.

The network parameters (IP address, etc.) are stored in the EEPROM when using the Bootstrap protocol to configure the node.

Note

BootP configuration is saved in the EEPROM!

Please note that the network configuration is stored in the EEPROM when using BootP in contrast to configuration via DHCP.

By default, BootP is activated in the fieldbus coupler/controller.

When BootP is activated, the fieldbus coupler/controller expects the BootP server to be permanently available.

If there is no BootP server available after a PowerOn reset, the network will remain inactive.

To operate the fieldbus coupler/controller with the IP configuration stored in the EEPROM, you must deactivate the BootP protocol after configuration. The Web-based management system is used to deactivate the BootP protocol on the respective fieldbus coupler/controller-internal HTML page under the "Port" link.

If BootP is deactivated, the fieldbus coupler/controller uses the parameters saved in the EEPROM when booting next.

If there is an error in the saved parameters, the I/O LED reports a blink code and configuration via BootP is turned on automatically.

12.1.2.2 DHCP (Dynamic Host Configuration Protocol)

The fieldbus coupler/controller internal HTML page opened via the "Port" link provides the option to configure the network using the data saved in the EEPROM or via DHCP instead of via the BootP protocol.

DHCP (Dynamic Host Configuration Protocol) is a further development of BootP and is backwards compatible with BootP.

Both BOOTP and DHCP assign an IP address to the fieldbus node (Client) when starting; the sequence is the same as for BootP.

For configuration of the network parameters via DHCP, the fieldbus coupler/controller sends a client request to the DHCP server e.g., on the connected PC.

A broadcast request is transmitted to Port 67 (DHCP server) via the protocol that contains the hardware address (MAC ID) for the fieldbus coupler/controller.

The DHCP server then receives this message. The server contains a database in which the MAC ID and IP addresses are assigned to one another. When a MAC address is found a broadcast reply is transmitted via the network.

The fieldbus coupler/controller "listens" at the specified Port 68 for a response from the DHCP server. Incoming packets contain information such as the IP address and the MAC address for the fieldbus coupler/controller. A fieldbus coupler/controller recognizes by the MAC address that the message is intended for that particular fieldbus coupler/controller and accepts the transmitted IP address into its network.

If there is no reply, the inquiry is sent again after 4 seconds, 8 seconds and 16 seconds.

If all inquiries receive no reply, a blink code is reported via the I/O LED. The parameters cannot be applied from the EEPROM.

Note

DHCP configuration is not saved in the EEPROM!

Please note that the network configuration is not stored in the EEPROM when using DHCP in contrast to configuration via BootP.

The difference between BOOTP and DHCP is that both use different assignment methods and that configuration with DHCP is time limited. The DHCP client always has to update the configuration after the time has elapsed. Normally, the same parameters are continuously confirmed by the server.

The difference between BOOTP and DHCP is that both use different assignment methods. BOOTP can be used to assign a fixed IP address for each client where the addresses and their reservation are permanently saved in the BOOTP server database.

Because of this time dependency, DHCP is also used to dynamically assign available IP addresses through client leases (lease time after which the client requests a new address) where each DHCP client address is saved temporarily in the server database.

In addition, DHCP clients do not require a system restart to rebind or renew configuration with the DHCP server. Instead, clients automatically enter a rebinding state at set timed intervals to renew their leased address allocation with the DHCP server. This process occurs in the background and is transparent to the user.

There are three different operating modes for a DHCP server:

• Manual assignment

In this mode, the IP addresses are permanently assigned on the DHCP server to specific MAC addresses. The addresses are assigned to the MAC address for an indefinite period.

Manual assignments are used primarily to ensure that the DHCP client can be reached under a fixed IP address.

• Automatic assignment

For automatic assignment, a range of IP addresses is assigned on the DHCP server.

If the address was assigned from this range once to a DHCP client, then it belongs to the client for an indefinite period as the assigned IP address is also bound to the MAC address.

• Dynamic assignment

This process is similar to automatic assignment, but the DHCP server has a statement in its configuration file that specifies how long a certain IP address may be "leased" to a client before the client must log into the server again and request an "extension".

If the client does not log in, the address is released and can be reassigned to another (or the same) client. The time defined by the administrator is called Lease Time.

Some DHCP servers also assign IP addresses based on the MAC address, i.e., a client receives the same IP address as before after longer network absence and elapse of the Lease Time (unless the IP address has been assigned otherwise in the mean time).

DHCP is used to dynamically configure the network parameters. The ETHERNET TCP/IP fieldbus controller has a DHCP client that supports the following options in addition to the default "IP address" option:

Option	Meaning
[OPT1] Subnet mask	32-bit address mask that displays which bits of the IP address identify the network and which identify the network stations.
[OPT2] Time zone	Time difference between the local time and the UTC (Universal Time Coordinated).
[OPT3] Gateway	IP address of the router that permits access to other networks.
[OPT6] DNS server	IP address of the name servers that converts a name into an IP address. Up to 2 DNS servers can be configured.
[OPT15] Domain name *)	The name of the domain is the unique name of a network. The domain name can contain up to 32 characters.
[OPT42] NTP server	IP address of the Network Time Server. When assigning an NTP server, the SNTP client is automatically enabled in the coupler.
[OPT51] Lease time	The maximum duration (i.e., how long the fieldbus coupler/controller maintains the assigned IP address) can be defined here. The maximum lease time for the fieldbus controller is 48 days. This is due to the internal timer resolution.
[OPT58] Renewing time	The renewing time indicates when the fieldbus coupler/controller must renew the lease time. The renewing time should be approximately half of the lease time.
[OPT59] Rebinding time	The rebinding time indicates after what amount of time the fieldbus coupler/controller must have received its new address. The rebinding time should be approximately 7/8 of the lease time.

Table 75: Meaning of DHCP options

*) In contrast to BootP, the DHCP client does not support assignment of the host name.

12.1.2.3 HTTP (Hypertext Transfer Protocol)

HTTP is a protocol used by WWW (World Wide Web) servers for the forwarding of hypermedia, texts, images, audiodata, etc.

Today, HTTP forms the basis of the Internet and is also based on requests and responses in the same way as the BootP protocol.

The HTTP server implemented in the (programmable) fieldbus coupler or controller is used for viewing the HTML pages saved in the coupler/controller. The HTML pages provide information about the coupler/controller (state, configuration), the network and the process image.

On some HTML pages, (programmable) fieldbus coupler or controller settings can also be defined and altered via the web-based management system (e.g. whether IP configuration of the coupler/controller is to be performed via the DHCP protocol, the BootP protocol or from the data stored in the EEPROM).

The HTTP server uses port number 80.

12.1.2.4 DNS (Domain Name Systems)

The DNS client enables conversion of logical Internet names such as www.wago.com into the appropriate decimal IP address represented with separator stops, via a DNS server. Reverse conversion is also possible.

The addresses of the DNS server are configured via DHCP, BootP or web-based management. Up to 2 DNS servers can be specified. The host identification can be achieved with two functions, an internal host table is not supported.

12.1.2.5 SNTP-Client (Simple Network Time Protocol)

The SNTP client is used for synchronization of the time of day between a time server (NTP and SNTP server Version 3 and 4 are supported) and the clock module integrated in the (programmable) fieldbus coupler or controller. The protocol is executed via a UDP port. Only unicast addressing is supported.

Configuration of the SNTP client

The configuration of the SNTP client is performed via the web-based management system under the "Clock" link. The following parameters must be set:

Parameter	Meaning
Adresse des Time-Servers	The address assignment can be made over an IP address.
Time zone	The time zone relative to GMT (Greenwich Mean time). A range of -12 to $+12$ hours is acceptable.
Update Time	The update time indicates the interval in seconds, in which the synchronization with the time server is to take place.
Enable Time Client	It indicates whether the SNTP Client is to be activated or deactivated.

Table 76: Meaning of the SNTP Parameters

12.1.2.6 FTP-Server (File Transfer Protocol)

The file transfer protocol (FTP) enables files to be exchanged between different network stations regardless of operating system.

In the case of the ETHERNET coupler/controller, FTP is used to store and read the HTML pages created by the user, the IEC61131 program and the IEC61131 source code in the (programmable) fieldbus coupler or controller.

A total memory of 2 MB is available for the file system.

Note

Cycles for flash limited to 1 million!

Up to 1 million write cycles per sector are allowed when writing the flash for the file system. The file system supports "Wear-Leveling", so that the same sectors are not always written to.

Information

More Information about the implemented Protocols

You can find a list of the exact available implemented protocols in the chapter "Technical Data" to the fieldbus coupler and/or controller.

12.1.2.7 SNMP (Simple Network Management Protocol)

The Simple Network Management Protocol (SNMP) is responsible for transporting the control data that allows the exchange of management information as well as status and statistic data between individual network components and a management system.

An SNMP management workstation polls the SNMP agents to obtain information on the relevant devices.

SNMP is supported in versions 1/2c and some fieldbus couplers/controllers in version 3.

This represents a community message exchange in SNMP versions 1 and 2c. The community name of the network community must thereby be specified.

In SNMP version 3, exchanging messages is user-related. Each device, that knows the passwords set via WBM, may read or write values from the controller. In SNMPv3, user data from SNMP messages can also be transmitted in encoded form. This way, both requested values and values to be written cannot be easily decoded by others via ETHERNET. This is why SNMPv3 is often used in safety-related networks.

The device data, that can be accessed or modified by an SNMP agent, is called SNMP object. The sets of SNMP objects are stored in a logical database called Management Information Base (MIB); this is why these objects are typically known as "MIB objects".

The SNMP of the ETHERNET controller includes both the general MIB acc. to RFC1213 (MIB II) and a special WAGO MIB.

SNMP is processed via port 161. The port number for SNMP traps (agent messages) is 161. Both ports must be enabled to use SNMP.

12.1.2.7.1 MIB II Description

MIB II acc. to RFC1213 is divided into the following groups:

able 77: MIB II groups				
Group	Identifier			
System Group	1.3.6.1.2.1.1			
Interface Group	1.3.6.1.2.1.2			
IP Group	1.3.6.1.2.1.4			
IpRoute Table Group	1.3.6.1.2.1.4.21			
ICMP Group	1.3.6.1.2.1.5			
TCP Group	1.3.6.1.2.1.6			
UDP Group	1.3.6.1.2.1.7			
SNMP Group	1.3.6.1.2.1.11			

Information

Additional Information:

Please find detailed information on these individual groups in section "MIB II groups" of the manual appendix..

12.1.2.7.2 Traps

Standard Traps

For specific events, the SNMP agent will independently send one of the following messages without polling the manager.

Note

Enable event messages (traps) in the WBM!

Initially enable the event messages in the WBM in menu "SNMP" under "Trap Enable". Traps in version 1, 2c and 3 may be activated separately.

The following messages are triggered automatically as traps (SNMPv1) by the fieldbus coupler/controller:

TrapType/TrapNumber/ OID of the provided value	Name	Event
TrapType = 0	ColdStart	Restart the coupler/controller
TrapType = 1	WarmStart	Reset via service switch
TrapType = 3	EthernetUp	Network connection detected
TrapType = 4	AuthenticationFailure	Unauthorized (abortive) MIB access
TrapType = 6/ ab Trap-Nummer 25 benutzerspezifisch	enterpriseSpecific	Enterprise-specific messages and function poll in the PFC program starting with enterprise trap number 25

Table 78: Standard Traps

12.1.3 Application Protocols

If fieldbus specific application protocols are implemented, then the appropriate fieldbus specific communication is possible with the respective coupler/controller. Thus the user is able to have a simple access from the respective fieldbus on the fieldbus node.

The implemented fieldbus specific application protocols these protocols are individual described in the following chapters.

12.2 MODBUS Functions

12.2.1 General

MODBUS is a manufacturer-independent, open fieldbus standard for diverse applications in manufacturing and process automation.

The MODBUS protocol is implemented according to the current Internet Draft of the IETF (Internet Engineering Task Force) and performs the following functions:

- Transmission of the process image
- Transmission of the fieldbus variables
- Transmission of different settings and information on the coupler/controller

The data transmission in the fieldside takes place via TCP and via UDP.

The MODBUS/TCP protocol is a variation of the MODBUS protocol, which was optimized for communication via TCP/IP connections.

This protocol was designed for data exchange in the field level (i.e. for the exchange of I/O data in the process image).

All data packets are sent via a TCP connection with the port number 502.

MODBUS/TCP segment

The general MODBUS/TCP header is as follows:

Table 79: MODBUS/TCP header

Byte	0	1	2	3	4	5	6	7	8n
	Ident (enter	tifier ed by	Prot	tocol- ntifier	Lengtl (High b	h field vte. low	Unit identifier (Slave	MODBUS function	Data
	recei	iver)	(is alv	ways 0)	by	te)	address)	code	

Information

Additional Information

The structure of a datagram is specific for the individual function. Refer to the descriptions of the MODBUS Function codes.

For the MODBUS protocol 15 connections are made available over TCP. Thus it allows digital and analog output data to be directly read out at a fieldbus node and special functions to be executed by way of simple MODBUS function codes from 15 stations simultaneously.

For this purpose a set of MODBUS functions from the Open MODBUS/TCP specification is realized.

Information

More information

More information on the "Open MODBUS/TCP specification" you can find in the Internet: <u>www.modbus.org</u>.

Therefore the MODBUS protocol based essentially on the following basic data types:

Table 80: Basic data types of MODBUS protocol

Data type	Length	Description
Discrete Inputs	1 Bit	Digital inputs
Coils	1 Bit	Digital outputs
Input Register	16 Bit	Analog input data
Holding Register	16 Bit	Analog output data

For each basic data type one or more function codes are defined.

These functions allow digital or analog input and output data, and internal variables to be set or directly read out of the fieldbus node.

Functi	on code	Function	Access method and description	Acce	ss to resources
FC1	0x01	Read Coils	Reading of several single input bits	R:	Process image, PFC variables
FC2	0x02	Read Input Discretes	Reading of several input bits	R:	Process image, PFC variables
FC3	0x03	Read Multiple Registers	Reading of several input registers	R:	Process image, PFC variables, internal variables, NOVRAM
FC4	0x04	Read Input Registers	Reading of several input registers	R:	Process image, PFC variables, internal variables, NOVRAM
FC5	0x05	Write Coil	Writing of an individual output bit	W:	Process image, PFC variables
FC6	0x06	Write Single Register	Writing of an individual output register	W:	Process image, PFC variables, internal variables, NOVRAM
FC11	0x0B	Get Comm Event Counters	Communication event counter	R:	None
FC15	0x0F	Force Multiple Coils	Writing of several output bits	W:	Process image, PFC variables
FC16	0x10	Write Multiple Registers	Writing of several output registers	W:	Process image, PFC variables, internal variables, NOVRAM
FC22	0x16	Mask Write Register		W:	Process image, PFC variables, NOVRAM
FC23	0x17	Read/Write Registers	Reading and writing of several output registers	R/W	Process image, PFC variables, NOVRAM

Table 81: List of the MODBUS functions in the fieldbus controller

To execute a desired function, specify the respective function code and the address of the selected input or output data.

Note

Note the number system when addressing!

The examples listed use the hexadecimal system (i.e.: 0x000) as their numerical format. Addressing begins with 0. The format and beginning of the addressing may vary according to the software and the control system. All addresses then need to be converted accordingly.

DO AO AO

<

<

<

Ø

Ø

....

12.2.2 **Use of the MODBUS Functions**

The example below uses a graphical view of a fieldbus node to show which MODBUS functions can be used to access data of the process image.

Figure 76: Use of the MODBUS Functions

Note

Use register functions to access analog signals and coil functions to access binary signals!

It is recommended that analog data be accessed with register functions ① and digital data with coil functions ②. If reading or writing access to binary signals is performed via register functions ③, an address shift may occur as soon as further analog modules are operated on the coupler/controller.

12.2.3 Description of the MODBUS Functions

All MODBUS functions are executed as follows:

- 1. A MODBUS TCP master (e.g., a PC) makes a request to the WAGO fieldbus node using a specific function code based on the desired operation..
- 2. The WAGO fieldbus node receives the datagram and then responds to the master with the proper data, which is based on the master's request.

If the WAGO fieldbus node receives an incorrect request, it sends an error datagram (Exception) to the master.

The exception code contained in the exception has the following meaning:

Exception Code	Meaning
0x01	Illegal function
0x02	Illegal data address
0x03	Illegal data value
0x04	Slave device failure

The following chapters describe the datagram architecture of request, response and exception with examples for each function code.

Note

Table 82: Example Codes

Reading and writing of outputs via FC1 to FC4 is also possible by adding an offset!

In the case of the read functions (FC1 ... FC4) the outputs can be additionally written and read back by adding an offset of 200hex (0x0200) to the MODBUS addresses in the range of $[0_{hex} \dots FF_{hex}]$ and an offset of 1000_{hex} (0x01000) to the MODBUS addresses in the range of $[6000_{hex} \dots 62FC_{hex}]$.

12.2.3.1 Function Code FC1 (Read Coils)

This function reads the status of the input and output bits (coils) in a slave device.

Request

The request specifies the reference number (starting address) and the bit count to read.

Example: Read output bits 0 to 7.

Table 83	· Request	of	Function	code FC1
1 4010 05	. Itequest	01	1 unotion	0000101

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0006
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x01
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Bit count	0x0008

Response

The current values of the response bits are packed in the data field. A binary 1 corresponds to the ON status and a 0 to the OFF status. The lowest value bit of the first data byte contains the first bit of the request. The others follow in ascending order. If the number of inputs is not a multiple of 8, the remaining bits of the last data byte are filled with zeroes (truncated).

Table	84.	Response	of Function	code I	FC1
raute	04.	Response	of Function	couc i	U.

Byte	Field name	Example		
Byte 7	MODBUS function code	0x01		
Byte 8	Byte count	0x01		
Byte 9	Bit values	0x12		

The status of the inputs 7 to 0 is shown as byte value 0x12 or binary 0001 0010. Input 7 is the bit having the highest significance of this byte and input 0 the lowest value.

The assignment is thus made from 7 to 0 as follows:

Table 85: Assignment of inputs

	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
Bit	0	0	0	1	0	0	1	0
Coil	7	6	5	4	3	2	1	0

Exception

Table 86: Exception of Function code FC1

Byte	Field name	Example
Byte 7	MODBUS function code	0x81
Byte 8	Exception code	0x01 or 0x02

Function Code FC2 (Read Input Discretes) 12.2.3.2

This function reads the input bits from a slave device.

Request

The request specifies the reference number (starting address) and the bit count to be read.

Example: Read input bits 0 to 7

Byte	Field name	Example	
Byte 0, 1	Transaction identifier	0x0000	
Byte 2, 3	Protocol identifier	0x0000	
Byte 4, 5	Length field	0x0006	
Byte 6	Unit identifier	0x01 not used	
Byte 7	MODBUS function code	0x02	
Byte 8, 9	Reference number	0x0000	
Byte 10, 11	Bit count	0x0008	

Table 97: Dequast of Eurotian and EC2

Response

The current value of the requested bits are packed into the data field. A binary 1 corresponds to the ON status and a 0 the OFF status. The lowest value bit of the first data byte contains the first bit of the inquiry. The others follow in an ascending order. If the number of inputs is not a multiple of 8, the remaining bits of the last data byte are filled with zeroes (truncated).

Table	88.	Response	of Function	code	FC2
1 4010	00.	response	or r unetion	couc	102

Byte	Field name	Example
Byte 7	MODBUS function code	0x02
Byte 8	Byte count	0x01
Byte 9	Bit values	0x12

The status of the inputs 7 to 0 is shown as a byte value 0x12 or binary 0001 0010. Input 7 is the bit having the highest significance of this byte and input 0 the lowest value. The assignment is thus made from 7 to 0 as follows:

	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
Bit	0	0	0	1	0	0	1	0
Coil	7	6	5	4	3	2	1	0

Exception

Table 90: Exception of Function code FC2

Byte	Field name	Example
Byte 7	MODBUS function code	0x82
Byte 8	Exception code	0x01 or 0x02

12.2.3.3 Function Code FC3 (Read Multiple Registers)

This function reads the contents of holding registers from a slave device in word format.

Request

The request specifies the reference number (start register) and the word count (register quantity) of the registers to be read. The reference number of the request is zero based, therefore, the first register starts at address 0. Example: Read registers 0 and 1.

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0006
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x03
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Word count	0x0002

Table 91: Request of Function code FC3

Response

The reply register data is packed as 2 bytes per register. The first byte contains the higher value bits, the second the lower values.

Table 92: Response of Function code FC3

Byte	Field name	Example
Byte 7	MODBUS function code	0x03
Byte 8	Byte count	0x04
Byte 9, 10	Value register 0	0x1234
Byte 11, 12	Value register 1	0x2345

The contents of register 0 are displayed by the value 0x1234 and the contents of register 1 is 0x2345.

Exception

 Table 93: Exception of Function code FC3

Byte	Field name	Example
Byte 7	MODBUS function code	0x83
Byte 8	Exception code	0x01 or 0x02

12.2.3.4 Function Code FC4 (Read Input Registers)

This function reads contents of input registers from the slave device in word format.

Request

The request specifies a reference number (start register) and the word count (register quantity) of the registers to be read. The reference number of the request is zero based, therefore, the first register starts at address 0. Example: Read registers 0 and 1

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0006
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x04
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Word count	0x0002

Table 94: Request of Function code FC4

Response

The register data of the response is packed as 2 bytes per register. The first byte has the higher value bits, the second the lower values.

Table	95:	Response	of Function	code FC4
1 4010	15.	response	or r unetion	couc i c i

Byte	Field name	Example
Byte 7	MODBUS function code	0x04
Byte 8	Byte count	0x04
Byte 9, 10	Value register 0	0x1234
Byte 11, 12	Value register 1	0x2345

The contents of register 0 are shown by the value 0x1234 and the contents of register 1 is 0x2345.

Exception

Table 96: Exception of Function code FC4

Byte	Field name	Example
Byte 7	MODBUS function code	0x84
Byte 8	Exception code	0x01 or 0x02

12.2.3.5 Function Code FC5 (Write Coil)

This function writes a single output bit to the slave device.

Request

The request specifies the reference number (output address) of output bit to be written. The reference number of the request is zero based; therefore, the first coil starts at address 0.

Example: Turn ON the second output bit (address 1)

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0006
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x05
Byte 8, 9	Reference number	0x0001
Byte 10	ON/OFF	0xFF
Byte 11		0x00

Table 97: Request of Function code FC5

Response

Table 98: Response of Function code FC5

Byte	Field name	Example
Byte 7	MODBUS function code	0x05
Byte 8, 9	Reference number	0x0001
Byte 10	Value	0xFF
Byte 11		0x00

Exception

Table 99: Exception of Function code FC5

Byte	Field name	Example
Byte 7	MODBUS function code	0x85
Byte 8	Exception code	0x01, 0x02 or 0x03

12.2.3.6 Function Code FC6 (Write Single Register)

This function writes the value of one single output register to a slave device in word format.

Request

The request specifies the reference number (register address) of the first output word to be written. The value to be written is specified in the "Register Value" field. The reference number of the request is zero based; therefore, the first register starts at address 0.

Example: Write a value of 0x1234 to the second output register

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0006
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x06
Byte 8, 9	Reference number	0x0001
Byte 10, 11	Register value	0x1234

Table 100: Request of Function code FC6

Response

The reply is an echo of the inquiry.

Byte	Field name	Example
Byte 7	MODBUS function code	0x06
Byte 8, 9	Reference number	0x0001
Byte 10, 11	Register value	0x1234

Exception

Table 102: Exception of Function code FC6

Byte	Field name	Example
Byte 7	MODBUS function code	0x85
Byte 8	Exception code	0x01 or 0x02

12.2.3.7 Function Code FC11 (Get Comm Event Counter)

This function returns a status word and an event counter from the slave device's communication event counter. By reading the current count before and after a series of messages, a master can determine whether the messages were handled normally by the slave.

Following each successful new processing, the counter counts up. This counting process is not performed in the case of exception replies, poll commands or counter inquiries.

Request

Table 103: Request of Function code FC11

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0002
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x0B

Response

The reply contains a 2-byte status word and a 2-byte event counter. The status word only contains zeroes.

Table	$104 \cdot$	Respons	se of F	Function	code]	FC11
1 abic	104.	respons	50 01 1	unction	couc i	

Byte	Field name	Example
Byte 7	MODBUS function code	0x0B
Byte 8, 9	Status	0x0000
Byte 10, 11	Event count	0x0003

The event counter shows that 3 (0x0003) events were counted.

Exception

Table 105: Exception of Function code FC 11

Byte	Field name	Example
Byte 7	MODBUS function code	0x85
Byte 8	Exception code	0x01 or 0x02

12.2.3.8 Function Code FC15 (Force Multiple Coils)

This function sets a sequence of output bits to 1 or 0 in a slave device. The maximum number is 256 bits.

Request

The request message specifies the reference number (first coil in the sequence), the bit count (number of bits to be written), and the output data. The output coils are zero-based; therefore, the first output point is 0.

In this example 16 bits are set, starting with the address 0. The request contains 2 bytes with the value 0xA5F0, or 1010 0101 1111 0000 in binary format.

The first data byte transmits the value of 0xA5 to the addresses 7 to 0, whereby 0 is the lowest value bit. The next byte transmits 0xF0 to the addresses 15 to 8, whereby the lowest value bit is 8.

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0009
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x0F
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Bit count	0x0010
Byte 12	Byte count	0x02
Byte 13	Data byte1	0xA5
Byte 14	Data byte2	0xF0

Table 106: Request of Function code FC15

Response

Table 107: Response of Function code FC15

Byte	Field name	Example
Byte 7	MODBUS function code	0x0F
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Bit count	0x0010

Exception

Table 108: Exception of Function code FC15

Byte	Field name	Example
Byte 7	MODBUS function code	0x8F
Byte 8	Exception code	0x01 or 0x02

12.2.3.9 Function Code FC16 (Write Multiple Registers)

This function writes a sequence of registers in a slave device in word format.

Request

The Request specifies the reference number (starting register), the word count (number of registers to write), and the register data . The data is sent as 2 bytes per register. The registers are zero-based; therefore, the first output is at address 0. Example: Set data in registers 0 and 1

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x000B
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x10
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Word count	0x0002
Byte 12	Byte count	0x04
Byte 13, 14	Register value 1	0x1234
Byte 15, 16	Register value 2	0x2345

Table 109: Request of Function code FC16

Response

Table 110: Response of Function code FC16

Byte	Field name	Example
Byte 7	MODBUS function code	0x10
Byte 8, 9	Reference number	0x0000
Byte 10, 11	Word count	0x0002

Exception

Table 111: Exception of Function code FC16

Byte	Field name	Example
Byte 7	MODBUS function code	0x85
Byte 8	Exception code	0x01 or 0x02

12.2.3.10 Function Code FC22 (Mask Write Register)

This function manipulates individual bits within a register using a combination of an AND mask, an OR mask, and the register's current content.

Request

Table 112: Request of Function code FC22
--

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x0002
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x16
Byte 8, 9	Reference number	0x0000
Byte 10, 11	AND mask	0x0000
Byte 12, 13	OR mask	0xAAAA

Response

Table 113: Response of Function code FC22

Byte	Field name	Example
Byte 7	MODBUS function code	0x10
Byte 8, 9	Reference number	0x0000
Byte 10, 11	AND mask	0x0000
Byte 12, 13	OR mask	0xAAAA

Exception

Table 114: Exception of Function code FC22

Byte	Field name	Example
Byte 7	MODBUS function code	0x85
Byte 8	Exception code	0x01 or 0x02

12.2.3.11 Function Code FC23 (Read/Write Multiple Registers)

This function performs a combination of a read and write operation in a single request. The function can write the new data to a group registers, and then return the data of a different group.

Request

The reference numbers (addresses) are zero-based in the request message; therefore, the first register is at address 0.

The request message specifies the registers to read and write. The data is sent as 2 bytes per register.

Example: The data in register 3 is set to value 0x0123, and values 0x0004 and 0x5678 are read out of the two registers 0 and 1.

Byte	Field name	Example
Byte 0, 1	Transaction identifier	0x0000
Byte 2, 3	Protocol identifier	0x0000
Byte 4, 5	Length field	0x000F
Byte 6	Unit identifier	0x01 not used
Byte 7	MODBUS function code	0x17
Byte 8, 9	Reference number for read	0x0000
Byte 10, 11	Word count for read (1125)	0x0002
Byte 12, 13	Reference number for write	0x0003
Byte 14, 15	Word count for write (1100)	0x0001
Byte 16	Byte count (2 x word count for write)	0x02
Byte 17(B+16)	Register values (B = Byte count)	0x0123

Table 115: Request of Function code FC23

Response

Table 116: Response of Function code FC23

Byte	Field name	Example
Byte 7	MODBUS function code	0x17
Byte 8	Byte count (2 x word count for read)	0x04
Byte 9(B+8)	Register values (B = Byte count)	0x0004 or 0x5678

Exception

Table 117: Exception of Function code FC23

Byte	Field name	Example
Byte 7	MODBUS function code	0x97
Byte 8	Exception code	0x01 or 0x02

Note

Note that if the register ranges overlap, the results are undefined! If register areas for read and write overlap, the results are undefined.

12.2.4 MODBUS Register Mapping

The following tables display the MODBUS addressing and the corresponding IEC61131 addressing for the process image, the PFC variables, the NOVRAM data, and the internal variables is represented.

Via the register services the states of the complex and digital I/O modules can be determined or changed.

Register Access Reading (with FC3, FC4 and FC23)

MODBUS address		IEC 61131	Memory range
[dec]	[hex]	address	
0255	0x00000x00FF	%IW0%IW255	Physical input area (1) First 256 words of physical input data
256511	0x01000x01FF	%QW256%QW511	PFC OUT area Volatile PFC output variables
512767	0x02000x02FF	%QW0%QW255	Physical output area (1) First 256 words of physical output data
7681023	0x03000x03FF	%IW256%IW511	PFC IN area Volatile PFC input variables
10244095	0x04000x0FFF	-	MODBUS exception: "Illegal data address"
409612287	0x10000x2FFF	-	Configuration register (see following chapter "Configuration Functions")
1228824575	0x30000x5FFF	%MW0%MW12287	NOVRAM 24 kB retain memory *) *) In Target settings RETAIN on 0, flags on MAX (24 kB)
2457625340	0x60000x62FC	%IW512%IW1275	Physical input area (2) Additional 764 words physical input data
2534128671	0x62FD0x6FFF	-	MODBUS exception: "Illegal data address"
2867229435	0x70000x72FB	%QW512%QW1275	Physical output area (2) Additional 764 words physical output data
2943632767	0x72FC0x7FFF	-	MODBUS exception: "Illegal data address"
3276836863	0x80000x8FFF	-	NOVRAM Additional, 16-bit length
3686465535	0x90000xFFFF	-	MODBUS exception: "Illegal data address"

Table 118: Register access reading (with FC3, FC4 and FC23)

Register Access Writing (with FC6, FC16, FC22 and FC23)

MODBUS address IEC 61131		Memory range	
[dec]	[hex]	address	
0255	0x00000x00FF	%QW0%QW255	Physical output area (1) First 256 words of physical output data
256511	0x01000x01FF	%IW256%IW511	PFC IN area Volatile PFC input variables
512767	0x02000x02FF	%QW0%QW255	Physical output area (1) First 256 words of physical output data
7681023	0x03000x03FF	%IW256%IW511	PFC IN area Volatile PFC input variables
10244095	0x04000x0FFF	-	MODBUS exception: "Illegal data address"
409612287	0x10000x2FFF	-	Configuration register (see following chapter ,,Configuration Functions")
1228824575	0x30000x5FFF	%MW0%MW12287	NOVRAM 24 kB retain memory *) *) In Target settings RETAIN on 0, flags on MAX (24 kB)
2457625340	0x60000x62FC	%QW512%QW1275	Physical output area (2) Additional 764 words physical output data
2534128671	0x62FD0x6FFF	-	MODBUS exception: "Illegal data address"
2867229435	0x70000x72FB	%QW512%QW1275	Physical output area (2) Additional 764 words physical output data
2943632767	0x72FC0x7FFF	-	MODBUS exception: "Illegal data address"
3276836863	0x80000x8FFF	-	NOVRAM Additional, 16-bit length
3686465535	0x90000xFFFF	_	MODBUS exception: "Illegal data address"

Table 119: Register access writing (with FC6, FC16, FC22 and FC23)

The digital MODBUS services (coil services) are bit accesses, with which only the states of digital I/O modules can be determined or changed. Complex I/O modules are not attainable with these services and so they are ignored. Because of this the addressing of the digital channels begins again with 0, so that the MODBUS address is always identical to the channel number, (i.e. the digital input no. 47 has the MODBUS address "46").

Bit Access Reading (with FC1 and FC2)

MODBUS address		Memory range	Description
[dec]	[hex]		
0511	0x00000x01FF	Physical input area (1)	First 512 digital inputs
5121023	0x02000x03FF	Physical output area (1)	First 512 digital outputs
10244095	0x04000x0FFF	-	MODBUS exception: "Illegal data address"
40968191	0x10000x1FFF	%QX256.0%QX511.15	PFC OUT area Volatile PFC output variables
819212287	0x20000x2FFF	%IX256.0%IX511.15	PFC IN area Volatile PFC input variables
1228832767	0x30000x7FFF	%MX0%MX1279.15	NOVRAM 2 kB retain memory (max. 24 kB)
3276834295	0x80000x85F7	Physical input area (2)	Starts with the 513 th and ends with the 2039 th digital input
3429636863	0x85F80x8FFF	-	MODBUS exception: "Illegal data address"
3686438391	0x90000x95F7	Physical output area (2)	Starts with the 513 th and ends with the 2039 th digital output
3839265535	0x95F80xFFFF	-	MODBUS exception: "Illegal data address"

Bit Access Writing (with FC5 and FC15)

MODBUS address		Memory Range	Description
[dez]	[hex]		
0511	0x00000x01FF	Physical output area (1)	First 512 digital outputs
5121023	0x02000x03FF	Physical output area (1)	First 512 digital outputs
10244095	0x04000x0FFF	-	MODBUS exception: "Illegal data address"
40968191	0x10000x1FFF	%IX256.0%IX511.15	PFC IN area Volatile PFC input variables
819212287	0x20000x2FFF	%IX256.0%IX511.15	PFC IN area Volatile PFC input variables
1228832767	0x30000x7FFF	%MX0%MX1279.15	NOVRAM 2 kB retain memory
3276834295	0x80000x85F7	Physical output area (2)	Starts with the 513 th and ends with the 2039 th digital input
3429636863	0x85F80x8FFF	-	MODBUS-Exception: "Illegal data address"
3686438391	0x90000x95F7	Physical output area (2)	Starts with the 513 th and ends with the 2039 th digital output
3839265535	0x95F80xFFFF	-	MODBUS-Exception: "Illegal data address"

Table 121: Bit access writing (with FC5 and FC15)

12.2.5 MODBUS Registers

Tuble 122. MODBOB legisters	Table	122:	MODBUS	registers
-----------------------------	-------	------	--------	-----------

Register address	Access	Length (Word)	Description
0x1000	R/W	1	Watchdog time read/write
0x1001	R/W	1	Watchdog coding mask 116
0x1002	R/W	1	Watchdog coding mask 1732
0x1003	R/W	1	Watchdog trigger
0x1004	R	1	Minimum trigger time
0x1005	R/W	1	Watchdog stop (Write sequence 0xAAAA, 0x5555)
0x1006	R	1	Watchdog status
0x1007	R/W	1	Restart watchdog (Write sequence 0x1)
0x1008	R/W	1	Stop watchdog (Write sequence 0x55AA or 0xAA55)
0x1009	R/W	1	MODBUS and HTTP close at watchdog time-out
0x100A	R/W	1	Watchdog configuration
0x100B	W	1	Save watchdog parameter
0x1020	R	12	LED error code
0x1021	R	1	LED error argument
0x1022	R	14	Number of analog output data in the process image (in bits)
0x1023	R	13	Number of analog input data in the process image (in bits)
0x1024	R	12	Number of digital output data in the process image (in bits)
0x1025	R	14	Number of digital input data in the process image (in bits)
0x1028	R/W	1	Boot configuration
0x1029	R	9	MODBUS/TCP statistics
0x102A	R	1	Number of TCP connections
0x102B	W	1	KBUS Reset
0x1030	R/W	1	Configuration MODBUS/TCP time-out
0x1031	R	3	Read out the MAC-ID of the coupler/controller
0x1035	R/W	1	Timeoffset RTC
0x1036	R/W	1	Daylight Saving
0x1037	R/W	1	Modbus Response Delay (ms)
0x1050	R	3	Diagnosis of the connected I/O modules
0x2000	R	1	Constant 0x0000
0x2001	R	1	Constant 0xFFFF
0x2002	R	1	Constant 0x1234
0x2003	R	1	Constant 0xAAAA
0x2004	R	1	Constant 0x5555
0x2005	R	1	Constant 0x7FFF
0x2006	R	1	Constant 0x8000
0x2007	R	1	Constant 0x3FFF
0x2008	R	1	Constant 0x4000
0x2010	R	1	Firmware version
0x2011	R	1	Series code
0x2012	R	1	Coupler/controller code
0x2013	R	1	Firmware version major revision
0x2014	R	1	Firmware version minor revision

Register	Access	Length	Description
address		(Word)	
0x2020	R	16	Short description controller
0x2021	R	8	Compile time of the firmware
0x2022	R	8	Compile date of the firmware
0x2023	R	32	Indication of the firmware loader
0x2030	R	65	Description of the connected I/O modules (module 064)
0x2031	R	64	Description of the connected I/O modules (module 65128)
0x2032	R	64	Description of the connected I/O modules (module 129192)
0x2033	R	63	Description of the connected I/O modules (module 193255)
0x2040	W	1	Software reset (Write sequence 0x55AA or 0xAA55)
0x2041	W	1	Format flash disk
0x2042	W	1	Extract HTML sides from the firmware
0x2043	W	1	Factory settings

Tabla	122.	MODDUG	ragiatora	Continuation	`
1 aute	123.	MODDUS	registers	Continuation	J

12.2.5.1 Accessing Register Values

You can use any MODBUS application to access (read from or write to) register values. Both commercial (e.g., "Modscan") and free programs (from http://www.modbus.org/tech.php) are available.

The following sections describe how to access both the registers and their values.

12.2.5.2 Watchdog Registers

The watchdog monitors the data transfer between the fieldbus master and the controller. Every time the controller receives a specific request (as define in the watchdog setup registers) from the master, the watchdog timer in the controller resets.

In the case of fault free communication, the watchdog timer does not reach its end value. After each successful data transfer, the timer is reset.

If the watchdog times out, a fieldbus failure has occurred. In this case, the fieldbus controller answers all following MODBUS TCP/IP requests with the exception code 0x0004 (Slave Device Failure).

In the controller special registers are used to setup the watchdog by the master (Register addresses 0x1000 to 0x1008).

By default, the watchdog is not enabled when you turn the controller on. To activate it, the first step is to set/verify the desired time-out value of the Watchdog Time register (0x1000). Second, the function code mask must be specified in the mask register (0x1001), which defines the function code(s) that will reset the timer for the first time. Finally, the Watchdog-Trigger register (0x1003) or the register 0x1007 must be changed to a non-zero value to start the timer subsequently.

Reading the Minimum Trigger time (Register 0x1004) reveals whether a watchdog fault occurred. If this time value is 0, a fieldbus failure is assumed. The timer of watchdog can manually be reset, if it is not timed out, by writing a value of 0x1 to the register 0x1003 or to the Restart Watchdog register 0x1007.

After the watchdog is started, it can be stopped by the user via the Watchdog Stop register (0x1005) or the Simply Stop Watchdog register (0x1008).

The watchdog registers can be addressed in the same way as described with the MODBUS read and write function codes. Specify the respective register address in place of the reference number.

Register address 0x1000 (4096 _{dec})		
Value	Watchdog time, WS_TIME	
Access	Read/write	
Default	0x0064	
Description	This register stores the watchdog timeout value as an unsigned 16 bit value. The default value is 0. Setting this value will not trigger the watchdog. However, a non zero value must be stored in this register before the watchdog can be triggered. The time value is stored in multiples of 100ms (e.g., 0x0009 is .9 seconds). It is not possible to modify this value while the watchdog is running.	

Table 124: Register address 0x1000

Table 125: Register address 0x1001

Register addres	s 0x1001 (4097 _{dec})
Value	Watchdog function coding mask, function code 116, WDFCM_1_16
Access	Read/write
Default	0xFFFF
Description	Using this mask, the function codes can be set to trigger the watchdog function. The function code can be selected via a "1"
	FC 1 Bit 0
	FC 2 Bit 1
	FC 3 Bit 2
	FC 4 Bit 3
	FC 5 Bit 4
	 FC 16 Bit 15
	Changes to the register value can only be made if the watchdog is deactivated. The bit pattern stored in the register defines the function codes that trigger the watchdog. Some function codes are not supported. For those the watchdog will not be triggered even if another MODBUS device transmits one of them.

Register address 0x1002 (4098 _{dec})		
Value	Watchdog function coding mask, function code 1732, WD_FCM_17_32	
Access	Read/write	
Default	0xFFFF	
Description	Same function as above, however, with the function codes 17 to 32.	
	FC 17 Bit 0 FC 18 Bit 1 FC 32 Bit 15 These codes are currently not supported, for this reason the default value should not be changed. Changes to the register value can only be made if the watchdog is deactivated. It is not possible to modify this value while the watchdog is running.	

Table 126: Register address 0x1002

Table 127: Register address 0x1003

Register address 0x1003 (4099 _{dez})		
Value	Watchdog Trigger, WD_TRIGGER	
Access	Read/write	
Standard	0x0000	
Description	This register is used for an alternative trigger method. The watchdog is triggered by writing different values in this register. Values following each other must differ in size. Writing of a value not equal to zero starts the watchdog after a Power-on. For a restart the written value must necessarily be unequal the before written value! A watchdog fault is reset and writing process data is possible again.	

Table 128: Register address 0x1004

Register address 0x1004 (4100 _{dez})		
Value	Minimum current trigger time, WD_AC_TRG_TIME	
Access	Read/write	
Standard	0xFFFF	
Description	This register saves the minimum current watchdog trigger time. If the watchdog is triggered, the saved value is compared with the current value. If the current value is smaller than the saved value, this is replaced by the current value. The unit is 100 ms/digit. The saved value is changed by writing new values, which does not affect the watchdog. 0x000 is not permissible.	

Table 129: Register address 0x1005

Register address 0x1005 (4101 _{dez})		
Value	Stop watchdog, WD_AC_STOP_MASK	
Access	Read/write	
Standard	0x0000	
Description	The watchdog is stopped if here the value 0xAAAA is written first, followed by 0x5555. The watchdog fault reaction is blocked. A watchdog fault is reset and writing on the process data is possible again.	

Register address 0x1006 (4102 _{dez})		
Value	While watchdog is running, WD_RUNNING	
Access	Read	
Standard	0x0000	
Description	Current watchdog status.	
	at 0x0000: Watchdog not active	
	at 0x0001: Watchdog active	
	at 0x0002: Watchdog exhausted.	

Table 130: Register address 0x1006

Table 131: Register address 0x1007

Register address 0x1007 (4103 _{dez})		
Value	Restart watchdog, WD_RESTART	
Access	Read/write	
Standard	0x0001	
Description	This register restarts the watchdog timer by writing a value of 0x1 into it. If the watchdog was stopped before the overrun, it is not restarted.	

Table 132: Register address 0x1008

Register address 0x1008 (4104 _{dez})		
Value	Simply stop watchdog, WD_AC_STOP_SIMPLE	
Access	Read/write	
Standard	0x0000	
Description	This register stops the watchdog by writing the value 0x0AA55 or 0X55AA into it. The watchdog timeout fault is deactivated and it is possible to write in the watchdog register again. If there is an existing watchdog fault, it is reset	

Table 133: Register address 0x1009

Register address 0x1009 (4105 _{dez})		
Value	Close MODBUS socket after watchdog timeout	
Access	Read/write	
Description	0: MODBUS socket is not closed	
	1: MODBUS socket is closed	

Table 134: Register address 0x100A

Register addres	ss 0x100A (4106 _{dez})
Value	Alternative watchdog
Access	Read/write
Standard	0x0000
Description	This register provides an alternate way to activate the watchdog timer. Procedure: Write a time value in register 0x1000; then write a 0x0001 into register 0x100A. With the first MODBUS request, the watchdog is started. The watchdog timer is reset with each MODBUS/TCP instruction. If the watchdog times out, all outputs are set to zero. The outputs will become operational again, after communications are re-established. Register 0x00A is non-volatile, including register 0x1000. It is not possible to modify the time value in register 0x1000 while the watchdog is running.

The length of each register is 1 word; i.e., with each access only one word can be written or read. Following are two examples of how to set the value for a time overrun:

Setting the watchdog for a timeout of more than 1 second:

- 1. Write 0x000A in the register for time overrun (0x1000). Register 0x1000 works with a multiple of 100 ms; $1 \text{ s} = 1000 \text{ ms}; 1000 \text{ ms} / 100 \text{ ms} = 10_{\text{dec}} = A_{\text{hex}}$)
- 2. Use the function code 5 to write 0x0010 (=2(5-1)) in the coding mask (register 0x1001).

Table 135: Starting Watchdog

FC	FC16	FC15	FC14	FC13	FC12	FC11	FC10	FC9	FC8	FC7	FC6	FC5	FC4	FC3	FC2	FC1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bin	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
hex	ex 0			()]	l			()			

Function code 5 (writing a digital output bit) continuously triggers the watchdog to restart the watchdog timer again and again within the specified time. If time between requests exceeds 1 second, a watchdog timeout error occurs.

3. To stop the watchdog, write the value 0x0AA55 or 0X55AA into 0x1008 (Simply Stop Watchdog register, WD_AC_STOP_SIMPLE).

Setting the watchdog for a timeout of 10 minutes or more:

- Write 0x1770 (= 10*60*1000 ms / 100 ms) in the register for time overrun (0x1000).
 (Register 0x1000 works with a multiple of 100 ms; 10 min = 600,000 ms; 600,000 ms / 100 ms = 6000dec = 1770hex)
- 2. Write 0x0001 in the watchdog trigger register (0x1003) to start the watchdog.
- 3. Write different values (e.g., counter values 0x0000, 0x0001) in the watchdog to trigger register (0x1003).

Values following each other must differ in size. Writing of a value not equal to zero starts the watchdog. Watchdog faults are reset and writing process data is possible again.

4. To stop the watchdog, write the value 0x0AA55 or 0X55AA into 0x1008 (Simply Stop Watchdog register, WD_AC_STOP_SIMPLE).

Table 150. Register address 0x100B				
Register address 0x100B (4107 _{dez})				
Value	Save watchdog parameter			
Access	Write			
Standard	0x0000			
Description	With writing of '0x55AA' or '0xAA55' in register 0x100B the registers 0x1000,			
	0x1001, 0x1002 are set on remanent.			

Table 136: Register address 0x100B

12.2.5.3 Diagnostic Registers

The following registers can be read to determine errors in the node:

Table	137:	Register	address	0x1020
1 uoic	157.	register	uuui 055	0/10/20

Register address 0x1020 (4128 _{dec})		
Value	LedErrCode	
Access	Read	
Description	Declaration of the Error code	

Table 138: Register address 0x1021

Register address 0x1021 (4129 _{dec})		
Value	LedErrArg	
Access	Read	
Description	Declaration of the Error argument	

12.2.5.4 Configuration Registers

The following registers contain configuration information of the connected modules:

Table	139:	Register	address	0x1022
1 4010		1.00.000	aaa 000	0

Register address 0x1022 (4130 _{dec})		
Value	CnfLen.AnalogOut	
Access	Read	
Description	Number of word-based outputs registers in the process image in bits (divide by 16 to get the total number of analog words)	

Table 140: Register address 0x1023

Register address 0x1023 (4131 _{dec})		
Value	CnfLen.AnalogInp	
Access	Read	
Description	Number of word-based inputs registers in the process image in bits (divide by 16 to get the total number of analog words)	
	to get the total number of analog words)	

Table 141: Register address 0x1024

Register address 0x1024 (4132 _{dec})		
Value	CnfLen.DigitalOut	
Access	Read	
Description	Number of digital output bits in the process image	

Table 142: Register address 0x1025

Register address 0x1025 (4133 _{dec})		
Value	CnfLen.DigitalInp	
Access	Read	
Description	Number of digital input bits in the process image	

Table 143: Register address 0x1028

Register address 0x1028 (4136 _{dec})		
Value	Boot options	
Access	Read/write	
Description	Boot configuration:	
_	1: BootP	
	2: DHCP	
	4: EEPROM	

ruore i i i regist			
Register address	s 0x1029 (4137 _{dec}) with 9 words		
Value	MODBUS TCP statistics		
Access	Read/write		
Description	1 word SlaveDeviceFailure	→	internal bus error, fieldbus error by activated watchdog
	1 word BadProtocol	\rightarrow	error in the MODBUS TCP header
	1 word BadLength	\rightarrow	Wrong telegram length
	1 word BadFunction	\rightarrow	Invalid function code
	1 word BadAddress	\rightarrow	Invalid register address
	1 word BadData	\rightarrow	Invalid value
	1 word TooManyRegisters	\rightarrow	Number of the registers which can be
			worked on is too large, Read/Write 125/100
	1 word TooManyBits	\rightarrow	Number of the coils which can be worked
			on is too large, Read/Write 2000/800
	1 word ModTcpMessageCounter	\rightarrow	Number of received MODBUS/TCP
			requests
	With Writing 0xAA55 or 0x55AA	. in	the register will reset this data area.

Table 144: Register address 0x1029

Table 145: Register address 0x102A

Register address 0x102A (4138 _{dec}) with a word count of 1						
Value	MODBUS/TCP Connections					
Access	Read					
Description	Number of TCP connections					

Table 146: Register address 0x102B

Register address 0x102B (4139 _{dez}) with a word count of up to 1					
Value	KBUS reset				
Access	Write				
Description	Writing of this register restarts the internal bus				

Table 147: Register address 0x1030

Register address 0x1030 (4144 _{dec}) with a word count of 1						
Value	Configuration MODBUS/TCP Time-out					
Access	Read/write					
Default	0x0258 (600 decimal)					
Description	This is the maximum number of milliseconds the fieldbus coupler will allow a MODBUS/TCP connection to stay open without receiving a MODBUS request. Upon time-out, idle connection will be closed. Outputs remain in last state. Default value is 600 ms (60 seconds), the time base is 100 ms, the minimal value is 100 ms. If the value is set to '0', the timeout is disabled. On this connection, the watchdog is triggered with a request.					

Table 148: Register address 0x1031

Register address 0x1031 (4145 _{dec}) with a word count of 3					
Value	Read the MAC-ID of the controller				
Access	Read				
Description	This register gives the MAC-ID, with a length of 3 words				

Table 1: Register address 0x1035						
Register address 0x1035 (4149 _{dez}) 1 Word						
Value	Configuration of the time offsets to the GMT time					
Access	Read/write					
Default	0x0000					
Description	Register to set the time offset to the UTC time (Greenwich meridian) with a					
_	possible setting range from -12 to $+12$.					

Table 1: Register address 0x1036					
Register address 0x1036 (4150 _{dez}) 1 Word					
Value	Configuration of summer or winter time				
Access	Read/write				
Default	0x0000				
Description	Register to set winter or summer time (Daylight Saving Time).				
	The values 0 and 1 are valid.				

Table 1: Register address 0x1037

Register address 0x1031 (4151 _{dez}) with a word count of 3						
Value	Configuration of Modbus Response Delay Time					
Access	Read/write					
Default	0x0000					
Description	This register saves the value for the Modbus Response Delay Time for a Modbus connection. The time base is 1 ms. On the Modbus TCP connection, the response will be delayed by the inscribed time.					

Table 149: Register address 0x1050

Register addre	ss 0x1050 (4176 _{dec}) with a word count of 3	since Firmware version 9					
Value	Diagnosis of the connected I/O modules	Diagnosis of the connected I/O modules					
Access	Read						
Description	Diagnosis of the connected I/O modules, length 3 words						
	Word 1: Number of the module						
	Word 2: Number of the channel						
	Word 3: Diagnosis						

Register addres	ss 0x2030 (8240 _{dec}) with a word count of up to 65																
Value	Description of the connected I/O modules																
Access	Read module 064																
Description	Length 165 words These 65 registers identify the controller and the first 64 modules present in a node. Each module is represented in a word. Because order numbers cannot be																
	read of Bit po	ut or	aigit	ai m	oaule	es, a	code	1S Q1	spiay	dule	or the	em, a	s dei	inea	belo	W:	
	Bit po	sitior	n 1			$\stackrel{\prime}{\rightarrow}$		Out	out m	nodul	le						
	Bit po	sitior	n 2	7		\rightarrow		Not	used								
	Bit po	sitior	n 8	14		\rightarrow		Mod	lule s	size i	n bit	S					
	Bit po	sitior	n 15			\rightarrow		Desi	Designation digital module								
	Exam	ples:															
	4 Cha	nnel	Digi	tal I	nput	Mo	lule :	= 0x	8401								
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Code	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
	Hex		8	3			4	1		0 1							
	2 Cha	2 Channel Digital Output Module = 0x8202															
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Code	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
	Hex	8				2				0				2			

Table 150: Register address 0x2030

Table 151: Register address 0x2031

Register address 0x2031 (8241 _{dec}) with a word count of up to 64							
Value	Description of the connected I/O modules						
Access	Read modules 65128						
Description	Length 1-64 words These 64 registers identi 128). Each module is re- read out of digital modul Bit position 0 Bit position 1 Bit position 27 Bit position 814 Bit position 15	fy the 2n presented les, a cod → → → → →	d block of I/O modules present (modules 65 to l in a word. Because order numbers cannot be e is displayed for them, as defined below: Input module Output module Not used Module size in bits Designation digital module				

Table 152: Register address 0x2032

Register address 0x2032 (8242 _{dec}) with a word count of up to 64							
Value	Description of the connected I/O modules						
Access	Read modules 129192						
Description	Length 164 words These 64 registers identif 192). Each module is rep read out of digital module Bit position 0 Bit position 1 Bit position 27 Bit position 814 Bit position 15		block of I/O modules present (modules 129 to in a word. Because order numbers cannot be is displayed for them, as defined below: Input module Output module Not used Module size in bits Designation digital module				

Register address 0x2033 (8243_{dec}) with a word count of up to 65			
Value	Description of the conne	cted I/O	modules
Access	Read modules 193 255	5	
Description	Length 1-63 words		
-	These 63 registers identif	fy the 4th	block of I/O modules present (modules 193 to
	255). Each module is rep	presented	in a word. Because order numbers cannot be
	read out of digital modul	es, a cod	e is displayed for them, as defined below:
	Bit position 0	\rightarrow	Input module
	Bit position 1	\rightarrow	Output module
	Bit position 27	\rightarrow	Not used
	Bit position 814	\rightarrow	Module size in bits
	Bit position 15	\rightarrow	Designation digital module

Table 153: Register address 0x2033

Table 154: Register address 0x2040

Register address 0x2040 (8256 _{dec})		
Value	Implement a software reset	
Access	Write (Write sequence 0xAA55 or 0x55AA)	
Description	With Writing 0xAA55 or 0x55AA the register will be reset.	

Table 155: Register address 0x2041

Register address 0x2041 (8257 _{dez})		
Value	Flash Format	
Access	Write (Write sequence 0xAA55 or 0x55AA)	
Description	The file system Flash is again formatted.	

Table 156: Register address 0x2042

Register address 0x2042 (8258 _{dez})		
Value	Extract data files	
Access	Write (Write sequence 0xAA55 or 0x55AA)	
Description	The standard files (HTML pages) of the Coupler/Controller are extracted and written into the Flash.	

Table 157: Register address 0x2043

Register address 0x2043 (8259 _{dez})		
Value	0x55AA	
Access	Write	
Description	Factory Settings	

12.2.5.5 Firmware Information Registers

The following registers contain information on the firmware of the controller:

Table	158.	Register	address	0x2010
rable	130.	Register	audiess	0X2010

Register address 0x2010 (8208 _{dec}) with a word count of 1		
Value	Revision, INFO_REVISION	
Access	Read	
Description	Firmware index, e.g. 0005 for version 5	

Table 159: Register address 0x2011

Register address 0x2011 (8209 _{dec}) with a word count of 1		
Value	Series code, INFO_SERIES	
Access	Read	
Description	WAGO serial number, e.g. 0750 for WAGO-I/O-SYSTEM 750	

Table 160: Register address 0x2012

Register address 0x2012 (8210 _{dec}) with a word count of 1		
Value	Order number, INFO_ITEM	
Access	Read	
Description	First part of WAGO order number,	
	e.g. 841 for the controller 750-841 or 341 for the coupler 750-341 etc.	

Table 161: Register address 0x2013

Register address 0x2013 (8211 _{dec}) with a word count of 1		
Value	Major sub item code, INFO_MAJOR	
Access	Read	
Description	Firmware version Major Revision	

Table 162: Register address 0x2014

Register address 0x2014 (8212_{dec}) with a word count of 1		
Value	Minor sub item code, INFO_MINOR	
Access	Read	
Description	Firmware version Minor Revision	

Table 163: Register address 0x2020

Register address 0x2020 (8224 _{dec}) with a word count of up to 16		
Value	Description, INFO_DESCRIPTION	
Access	Read	
Description	Information on the controller, 16 words	

Table 164: Register address 0x2021

Register address 0x2021 (8225 _{dec}) with a word count of up to 8		
Value	Description, INFO_DESCRIPTION	
Access	Read	
Description	Time of the firmware version, 8 words	

Table 165: Register address 0x2022

Register address 0x2022 (8226 _{dec}) with a word count of up to 8		
Value	Description, INFO_DATE	
Access	Read	
Description	Date of the firmware version, 8 words	

Table 166: Register address 0x2023

Register address 0x2023 (8227 _{dec}) with a word count of up to 32		
Value	Description, INFO_LOADER_INFO	
Access	Read	
Description	Information to the programming of the firmware, 32 words	

12.2.5.6 Constant Registers

The following registers contain constants, which can be used to test communication with the master:

Table 16/: Register address 0x200	Table	167: I	Register	address	0x2000
-----------------------------------	-------	--------	----------	---------	--------

Register address 0x2000 (8192 _{dec})		
Value	Zero, GP_ZERO	
Access	Read	
Description	Constant with zeros	

Table 168: Register address 0x2001

Register address 0x2001 (8193 _{dec})		
Value	Ones, GP_ONES	
Access	Read	
Description	Constant with ones	
	 –1 if this is declared as "signed int" 	
	 MAXVALUE if it is declared as "unsigned int" 	

Table 169: Register address 0x2002

Register address 0x2002 (8194 _{dec})		
Value	1,2,3,4, GP_1234	
Access	Read	
Description	This constant value is used to test the Intel/Motorola format specifier. If the master reads a value of $0x1234$, then with Intel format is selected – this is the correct format. If $0x3412$ appears, Motorola format is selected.	

Table 170: Register address 0x2003

Register address 0x2003 (8195 _{dec})		
Value	Mask 1, GP_AAAA	
Access	Read	
Description	This constant is used to verify that all bits are accessible to the fieldbus master.	
	This will be used together with register 0x2004.	

Table 171: Register address 0x2004

Register address 0x2004 (8196 _{dec})		
Value	Mask 1, GP_5555	
Access	Read	
Description	This constant is used to verify that all bits are accessible to the fieldbus master. This will be used together with register $0x2003$.	

Table 172: Register address 0x2005

Register address 0x2005 (8197 _{dec})		
Value	Iaximum positive number, GP_MAX_POS	
Access	Read	
Description	Constant in order to control arithmetic.	

Table 173: Register address 0x2006

Register address 0x2006 (8198 _{dec})		
Value	Aaximum negative number, GP_MAX_NEG	
Access	Read	
Description	Constant in order to control arithmetic	

Table 174: Register address 0x2007

Register address 0x2007 (8199 _{dec})		
Value	Maximum half positive number, GP_HALF_POS	
Access	Read	
Description	Constant in order to control arithmetic	

Table 175: Register address 0x2008

Register address 0x2008 (8200 _{dec})				
Value	Maximum half negative number, GP_HALF_NEG			
Access	Read			
Description	Constant in order to control arithmetic			

Table 176: Register address 0x3000 to 0x5FFF

Register address 0x3000 to 0x5FFF (12288 _{dec} to 24575 _{dec})				
Value	Retain range			
Access	Read/write			
Description	These registers can be accessed as the flag/retain range			

12.3 EtherNet/IP (Ethernet/Industrial Protocol)

12.3.1 General

EtherNet/IP stands for Ethernet Industrial Protocol and defines an open industry standard that extends the classic Ethernet with an industrial protocol. This standard was jointly developed by ControlNet International (CI) and the Open DeviceNet Vendor Association (ODVA) with the help of the Industrial Ethernet Association (IEA).

This communication system enables devices to exchange time-critical application data in an industrial environment. The spectrum of devices ranges from simple I/O devices (e.g., sensors) through to complex controllers (e.g., robots).

EtherNet/IP is based on the TCP/IP protocol family and consequently uses the bottom 4 layers of the OSI layer model in unaltered form so that all standard Ethernet communication modules such as PC interface cards, cables, connectors, hubs and switches can also be used with EtherNet/IP. Positioned above the transport layer is the encapsulation protocol, which enables use of the Control & Information Protocol (CIP) on TCP/IP and UDP/IP.

CIP, as a major network independent standard, is already used with ControlNet and DeviceNet. Therefore, converting from one of these protocols to EtherNet/IP is easy to do. Data exchange takes place with the help of an object model.

In this way, ControlNet, DeviceNet and EtherNet/IP have the same application protocol and can therefore jointly use device profiles and object libraries. These objects enable plug-and-play interoperability between complex devices of different manufacturers.

12.3.2 **Protocol overview in the OSI model**

In order to clarify the interrelationships between DeviceNet, ControlNet and EtherNet/IP, the following diagram presents the associated ISO/OSI reference model.

7 Application Layer	(Comn	Object Library nunications, Applications, Synchronization)	Safety Object Library	Comon			
6 Presentation Layer	E H	Safety Services and Messages	Industrial Proto				
5 Session Layer	Conr	Connection Management, Routing					
4 Transport Layer	TCP/UDP	CompoNet	ControlNet Network	DeviceNet	Ne		
3 Network Layer	Internet Protocol	Network and Transport and Transport		Transport	twork Adaj		
2 Data Link Layer	Ethernet CompoNet ControlNet CSMA/CD Time Slot CTDMA		CAN CSMA/NBA	ptations of (
1 Physical Layer	Ethernet	CompoNet	ControlNet	DeviceNet	JIP		

Table 177: ISO/OSI reference model

12.3.3 Characteristics of the EtherNet/IP Protocol Software

The Ethernet/IP product classes are divided into 4 levels with each level containing a particular functionality. Each higher level in turn possesses at least the functionality of a lower level. The fieldbus coupler supports levels 1 and 2 of the Ethernet/IP product classes, which immediately build on each other.

- Unconnected Message Manager (UCMM) client and server
- 128 Encapsulation Protocol sessions
- 128 Class 3 or Class 1 connections combined
 - Class 3 connection explicit messages (connection oriented, client and server)
 - Class 1 connection I/O messages (connection oriented, client and server)

12.3.4 EDS File

The "Electronic Data Sheets" file (EDS file for short) contains the characteristics of the fieldbus coupler/controller and information regarding its communication capabilities. The EDS file required for Ethernet/IP operation is imported and installed by the corresponding configuration software.

Note

Downloading the EDS file!

You can download the EDS file in the download area of the WAGO web site: <u>http://www.wago.com</u> \rightarrow Service \rightarrow Downloads \rightarrow AUTOMATION

Information

Information about installing the EDS file

When installing the EDS file, refer to the information provided in the documentation of the configuration software, which you are using.

12.3.5 Object Model

12.3.5.1 General

For network communication, Ethernet/IP utilizes an object model in which all functions and data of a device are described.

Each node in the network is depicted as a collection of objects. The object model contains terms that are defined as follows:

Object:

An object is an abstract representation of individual, related components within a device. It is determined by its data or attributes, its outwardly applied functions or services, and by its defined behavior.

Class:

A class describes a series of objects which all represent the same type of system components. A class is the generalization of an object. All objects in a class are identical as regards form and behavior, but can comprise differing attribute values.

Instance:

An instance describes a specific and physical occurrence of an object. The terms "object," "instance" and "object instance" all refer to a specific instance. Different instances of a class have the same services, the same behavior and the same variables (attributes). However, you can have different variable values. For example, Finland is an instance of the "Land" object class.

Variable:

The variables (attributes) describe an externally visible characteristic or the function of an object. Typical attributes include configuration or status information.

For example, the ASCII name of an object or the repetition frequency of a periodic object is output.

Service:

A service is a function supported by an object and/or an object class. CIP defines a group of common services that are applied to the attributes. These services execute specified actions.

Example: Reading variables.

Behavior:

The behavior specifies how an object functions. The functions result from various occurrences, which are determined by the object, e.g. receiving service requests, recording internal errors or the sequence of timers.

12.3.5.2 Class Overview

CIP classes are included in the CIP specification of ODVA. They describe the properties (Volume 1, "Common Industrial Protocol") of Ethernet and CAN independent of their physical interface. The physical interface is described in a separate specification. For Ethernet/IP, this is Volume 2 ("Ethernet/IP Adaptation of CIP"), which describes the adaption of Ethernet /IP to CIP.

For this purpose, WAGO uses classes 01_{hex} , 02_{hex} , 04_{hex} , 05_{hex} , 06_{hex} and $F4_{hex}$, which are described in Volume 1 ("Common Industrial Protocol"). Classes $F5_{hex}$ and $F6_{hex}$ are supported from Volume 2 ("Ethernet/IP Adaptation of CIP").

WAGO-specific classes listed in the overview table below are also available.

All CIP Common classes listed and the WAGO-specific classes listed below that are described in detail in the following individual sections after a brief explanation of the table headings in the object descriptions.

Class	Name
01 hex	Identity
02 hex	Message Router
04 hex	Assembly
05 hex	Connection
06 hex	Connection Manager
F5 hex	TCP/IP Interface Object
F6 hex	Ethernet Link Object

Table 178: CIP common class

Class	Name		
64 hex	Coupler/Controller Configuration Object		
65 hex	Discrete Input Point		
66 hex	Discrete Output Point		
67 _{hex}	Analog Input Point		
68 hex	Analog Output Point		
69 hex	Discrete Input Point Extended 1		
6A hex	Discrete Output Point Extended 1		
6B hex	Analog Input Point Extended 1		
6C hex	Analog Output Point Extended 1		
6D hex	Discrete Input Point Extended 2		
6E hex	Discrete Output Point Extended 2		
6F hex	Analog Input Point Extended 2		
70 hex	Analog Output Point Extended 2		
71 hex	Discrete Input Point Extended 3		
72 hex	Discrete Output Point Extended 3		
73 hex	Analog Input Point Extended 3		
74 hex	Analog Output Point Extended 3		
80 hex	Module Configuration		
81 hex	Module Configuration Extended 1		
A0 hex	Input fieldbus variable USINT		
A1 hex	Input fieldbus variable USINT Extended 1		
A2 hex	Input fieldbus variable USINT Extended 2		
A3 hex	Output fieldbus variable USINT		
A4 hex	Output fieldbus variable USINT Extended 1		
A5 hex	Output fieldbus variable USINT Extended 2		
A6 hex	Input fieldbus variable UINT		
A7 hex	Input fieldbus variable UINT Extended 1		
A8 hex	Output fieldbus variable UINT		
A9 hex	Output fieldbus variable UINT Extended 1		
AA hex	Input fieldbus variable UDINT		
AB hex	Input fieldbus variable UDINT Offset UINT		
AC hex	Output fieldbus variable UDINT		
AD hex	Output fieldbus variable UDINT Offset UINT		

Table 179: WAGO specific classes

12.3.5.3 Explanation of the Table Headings in the Object Descriptions

Table heading	Description			
Attribute ID	Integer value which is assigned to the corresponded attribute			
Access	Set: The attribute can be accessed by means of Set_Attribute services.			
	Response also possible with Get_Attribute service! All the set attributes can also be accessed by means of Get. The attribute can be accessed by means of Get_Attribute services			
	Get_Attribute_All: Delivers content of all attributes. Set_Attribute_Single: Modifies an attribute value.			
	Reset: Performs a restart. 0: Restart 1: Restart and restoration of factory settings			
NV	NV (non volatile): The attribute is permanently stored in the controller.			
	V (volatile): The attribute is not permanently stored in the controller. Note Without specifying, the attribute is not saved! If this column is missing, all attributes have the type V (volatile).			
Name	Designation of the attribute			
Data type	Designation of the CIP data type of the attribute			
Description	Short description for the Attribute			
Default value	Factory settings			

Table 180: Explanation of the table headings in the object descriptions

12.3.5.4 Identity (01 hex)

The "Identity" class provides general information about the fieldbus coupler/controller that clearly identifies it.

Instance 0 (Class Attributes)

Attribute ID	ID Access Name Data type Description		Default value		
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Maximum instance	1 (0x0001)
3	Get	Max ID number of class attributes	UINT	Maximum number of class attributes	0 (0x0000)
4	Get	Max ID number of instance attribute	UINT	Maximum number of instance attributes	0 (0x0000)

Table 181: Identity (01 hex) – Class

Instance 1

|--|

Attribute ID	Access	Name	Data type	Description	Default v	alue		
1	Get	Vendor ID	UINT	Manufacturer identification	40 (0x002	28)		
2	Get	Device Type	UINT	General type designation of the product	12 (0x000	12 (0x000C)		
3	Get	Product Code	UINT	Designation of the coupler/ controller	z. B. 841 873 (0x03	(0x0349), 369), 341(0x0155) etc.		
4	Get	Revision	STRUCT of:	Revision of the identity	Dependin	g on the firmware		
		Major Revision	UINT	objects				
		Minor Revision	UINT					
5	Get	Status	WORD	Current status of the device	Bit 0 Bit 1 = 0 Bit 2 = 0 = 1 Bit 3 = 0 Bit 4-7 =0010 =0011 Bit 8-11 Bit 12-	Assignment to a master reserved (configured) Configuration is unchanged Configuration is different to the manufacturers parameters reserved Extended Device Status at least one faulted I/O connection no I/O connection established not used reserved		
	<u> </u>				15 =0			
6	Get	Serial Number	UINT	Serial number	The last 4	digits of MAC ID		
7	Get	Product Name	SHORT_ STRING	Product name				

Common Services

Table 183: Identity	(01 hex) – Common	service
---------------------	---------	------------	---------

Service code	Service available		Service name	Description
	Class	Instance		
01 hex	Yes	Yes	Get_Attribute_All	Supplies contents of all attributes
05 hex	No	Yes	Reset	Implements the reset service Service parameter
				 Emulates a Power On reset and re- establishes factory settings
0E hex	No	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.5 Message Router (02 hex)

The "Message Router Object" provides connection points (in the form of classes or instances), which can use a client for addressing services (reading, writing). These messages can be transmitted both when connected and when unconnected from the client to the fieldbus coupler.

Instance 0 (Class Attributes)

Table 184: Message router (02 hex) – Class

Attribute ID	Access	Name	Data type Description		Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Number of Attributes UINT Number of attributes 0		0 (0x0000)	
3	Get	Number of Services UINT Number of services		0 (0x0000)	
4	Get	Max ID Number of Class Attributes	UINT	Maximum number of class attributes	0 (0x0000)
5	Get	Max ID Number of Instance Attributes	UINT	Maximum number of instance attributes	0 (0x0000)

Note

Get_Attribute_All service can only be used!

The class attributes are only accessible with the Get_Attribute_All service.

Instance 1

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	ObjectList	STRUCT of:	-	
		Number	UINT	Number of implemente d classes	40 (0x0028)
		Classes	UINT	Implemente d classes	01 00 02 00 04 00 06 00 F4 00 F5 00 F6 00 64 00 65 0066 0067 00 68 00 69 00 6A 00 6B 00 6C 00 6D 00 6E 00 6F 00 70 00 71 00 72 00 73 00 74 00 80 00 81 00 A0 00 A1 00 A2 00 A6 00 A7 00 AA 00 AB 00 A3 00 A4 00 A5 00 A8 00 A9 00 AC 00 AD 00
2	Get	NumberAvailable	UINT	Maximum number of different connections	128 (0x0080)

Common Services

|--|

Service code	Service available		Service-Name	Description
	Class Instance			
01 hex	Yes	No	Get_Attribute_All	Supplies contents of all attributes
0E hex	No Yes		Get_Attribute_Single	Supplies contents of the appropriate
				attribute

12.3.5.6 Assembly Object (04 hex)

Using the "Assembly" classe, even several diverse objects can be combined. These could be, for example, input and output data, status and control information or diagnostic information. WAGO uses the manufacturer-specific instances in order to provide these objects for you in various arrangements. This gives you an efficient way to exchange process data. The following is a description of the individual static Assembly instances with their contents and arrangements.

Instance (Class Attributes)

Table 187: Assembly (04 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	2 (0x0002)
2	Get	Max	UINT	Highest Instance	111 (0x006F)
		Instance			

Overview of static Assembly instances

Table 188: Overview of static Assembly instances

Instance	Description
Instance 101 (65 hex)	For analog and digital output data, as well as fieldbus input variables
Instance102 (66 hex)	For digital output data and fieldbus input variables
Instance 103 (67 hex)	For analog output data and fieldbus input variables
Instance 104 (68 hex)	For analog and digital intput data, status and fieldbus output variables
Instance 105 (69 hex)	For digital input data, status and fieldbus output variables
Instance 106 (6A hex)	For analog input data, status and fieldbus output variables
Instance 107 (6B $_{hex}$)	For digital and analog input data and fieldbus output variables
Instance 108 (6C hex)	For digital input data and fieldbus output variables
Instance109 (6D _{hex})	For analog input data and fieldbus output variables
Instance $110 (6E_{hex})$	For fieldbus output variables
Instance 111 (6F _{hex})	For fieldbus intput variables

Instance 101 (65 hex)

This assembly instance contains analog and digital output data. Any fieldbus input variables that may be defined are attached behind this.

Attribute ID	Access	Name	Data type	Description	Default value
3	Get/Set	Data	ARRAY of BYTE	Only analog and digital output data, as well as possible fieldbus input variables, are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 189: Static assembly instances – Instance 101 (65 hex)

Instance 102 (66 hex)

This assembly instance contains digital output data and fieldbus input variables only.

Attribute ID	Access	Name	Data type	Description	Default value
3	Get/Set	Data	ARRAY of BYTE	Digital output data and fieldbus input variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 190: Static assembly instances – Instance 102 (66 hex)

Instance 103 (67 hex)

This assembly instance contains analog output data and fieldbus input variables only.

Table 191: Static assembly instances – Instance 103 (67 hex)

Attribute ID	Access	Name	Data type	Description	Default value
3	Get/Set	Data	ARRAY of BYTE	Analog output data and fieldbus input variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Instance 104 (68 hex)

This assembly instance contains analog and digital input data, status (= value from class 100, instance 1, attribute 5) and fieldbus output variables.

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Analog and digital input data, the status and fieldbus output variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 192: Static assembly instances – Instance 104 (68 hex)

Instance 105 (69 hex)

This assembly instance contains only digital input data, status (= value from class 100, instance 1, attribute 5) and fieldbus output variables.

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Digital input data, status and fieldbus output variables are contained in the process image	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 193: Static assembly instances – Instance 105 (69 hex)

Instance 106 (6A hex)

This assembly instance contains only analog input data, status (= value from class 100, instance 1, attribute 5) and fieldbus output variables.

Table 194: Static assembly instances - Instance 106 (6A hex)

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Analog input data, status and fieldbus output variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Instance 107 (6B hex)

This assembly instance contains analog and digital input data and fieldbus output variables.

Table 195: Static assembly instances – Instance 107 (6B_{hex})

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Analog and digital input data and fieldbus output variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Instance 108 (6C hex)

This assembly instance contains only digital input data and fieldbus output variables.

Attribute ID	Access	Name	Data type	Description	Default value	
3	Get	Data	ARRAY of BYTE	Digital input data and fieldbus output variables are contained in the process image.	-	
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-	

Table 196: Static assembly instances – Instance 108 (6C hex)

Instance 109 (6D hex)

This assembly instance contains only analog input data and fieldbus output variables.

Table 197: Static assembly instances – Instance 109 (6C hex)

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Analog input data and fieldbus output variables are contained in the process image.	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Instance 110 (6E hex)

This assembly instance contains fieldbus output variables.

Attribute ID	Access	Name	Data type	Description	Default value
3	Get	Data	ARRAY of BYTE	Reference of the process image: only PFC output variables	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 198: Static assembly instances – Instance 110 (6E_{hex})

Instance 111 (6F hex)

This assembly instance contains fieldbus input variables only.

Attribute ID	Access	Name	Data type	Description	Default value
3	Set	Data	ARRAY of BYTE	Reference of the process image: only PFC input variables	-
4	Get	Data Size	UNIT	Number of Bytes in the process data image	-

Table 199: Static assembly instances – Instance 111 (6F_{hex})

Instance 198 (C6 hex) "Input Only"

This instance is used to establish a connection when no outputs are to be addressed or when inputs, which are already being used in an exclusive owner connection, are to be interrogated. The data length of this instance is always zero. This instance can only be used in the "consumed path" (seen from the slave device).

Instance 199 (C7 hex) "Listen only"

This instance is used to establish a connection based on an existing exclusive owner connection. The new connection also has the same transmission parameters as the exclusive owner connection. When the exclusive owner connection is cleared, this connection, too, is automatically cleared. The data length of this instance is always zero.

This instance can only be used in the "consumed path" (from the point of view of the slave device).

Common Service

Service code	Service available		Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

Table 200: Static assembly instances – Common service

The software inspects the writing of attribute 3 of assembly instances 101, 102 and 103. If the limit value has been exceeded, it is identified and, if necessary, corrected. However, a write request is not rejected. This means that if less data is received than expected, only this data is written. If more data is received than expected, the received data at the upper limit is deleted. In the case of explicit messages, however, a defined CIP is generated even though the data has been written.

12.3.5.7 Connection (05 hex)

Because the connections are established and terminated via the connection manager, the class and instance attributes of this class are not visible.

12.3.5.8 Connection Manager (06 hex)

The "Connection Manager Object" provides the internal resources that are required for the input and output data and explicit messages. In addition, the administration of this resource is an assignment of the "Connection Manager Object".

For each connection (input and output data or explicit), another instance of the connection class is created. The connection parameters are extracted from the "Forward Open" service, which is responsible for establishing a connection.

The following services are supported for the first instance:

- Forward_Open
- Unconnected_Send
- Forward_Close

No class and instance attributes are visible.

12.3.5.9 Port Class (F4 hex)

The "Port Class Object" specifies the existing CIP ports on the fieldbus coupler/coupler. There is one instance for each CIP port.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	1 (0x0001)
3	Get	Num Instances	UINT	Number of current ports	1 (0x0001)
8	Get	Entry Port	UINT	Instance of the port object where the request arrived.	1 (0x0001)
9	Get	All Ports	Array of Struct UINT	Array with instance attributes 1 and 2 of all instances	0 (0x0000) 0 (0x0000) 4 (0x0004) 2 (0x0002)

Instance 1

Table 202: Port class (F4 hex) – Instance 1

Attribute ID	Access	NV	Name	Data type	Description	Default value
1	Get	V	Port Type	UINT	-	4 (0x0004)
2	Get	V	Port Number	UINT	CIP port number	2 (0x0002) (EtherNet/IP)
3	Get	V	Port Object	UINT	Number of 16 bit words in the following path	2 (0x0002)
				Padded EPATH	Object, which manages this port	0x20 0xF5 0x24 0x01 (equals TCP/IP Interface Object)
4	Get	V	Port Name	SHORT_ STRING	Port name	
7	Get	V	Node Address	Padded EPATH	Port segment (IP address)	Depends on IP address

Common Services

Table 203:	Port class	s (F4 hex) – Common	service
------------	------------	-----------	------------	---------

Service code	Service available		Service-Name	Description
	Class	Instance		
01 hex	Yes	Yes	Get_Attribute_All	Supplies contents of all attributes
0E _{hex}	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.10 TCP/IP Interface (F5 hex)

The "TCP/IP Interface Object" provides for the configuration of the TCP/IP network interface of a fieldbus coupler/controller. Examples of configurable objects include the IP address, the network mask and the gateway address of the fieldbus coupler/controller.

The underlying physical communications interface that is connected with the TCP/IP interface object can be any interface supported by the TCP/IP protocol. Examples of components that can be connected to a TCP/IP interface object include the following: an Ethernet interface 802.3, an ATM (Asynchronous Transfer Mode) interface or a serial interface for protocols such as PPP (Point-to-Point Protocol).

The TCP/IP interface object provides an attribute, which is identified by the linkspecific object for the connected physical communications interface. The linkspecific object should typically provide link-specific counters as well as any linkspecific configuration attributes.

Each device must support exactly one instance of the TCP/IP interface object for each TCP/IP-compatible communications interface. A request for access to the first instance of the TCP/IP interface object must always refer to the instance connected with the interface, which is used to submit the request.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	1 (0x0001)
3	Get	Num Instances	UINT	Number of the current	1 (0x0001)

Table 204: TCP/IP interface (F5hex) - Class

Instance 1

Table 205: TCP/IP interface (F5_{hex}) – Instance 1

Attribute ID	Access	NV	Name	Data type	Description	Default value
1	Get	V	Status	DWORD	Interface state	-
2	Get	V	Configuration Capability	DWORD	Interface flags for possible kinds of configuration	0x00000017
3	Set	NV	Configuration Control	DWORD	Specifies, how the device gets is TCP/IP configuration after the first Power On	0x00000011
4	Get	V	Physical Link Object	STRUCT of		
			Path size	UINT	Number of 16 Bit words in the following path	0x0002
			Path	Padded EPATH	Logical path, which points to the physical Link object	0x20 0xF6 0x24 0x03 (equates to the Ethernet Link Object)
5	Set	NV	Interface Configuration	STRUCT of	-	
			IP Address	UDINT	IP address	0
			Network Mask	UDINT	Net work mask	0
			Gateway Address	UDINT	IP address of default gateway	0
			Name Server	UDINT	IP address of the primary name of the server	0
			Name Server 2	UDINT	IP address of the secondary name of the server	0
			Domain Name	STRING	Default domain name	
6	Set	NV	Host Name	STRING	Device name	· · · · ·

Common Services

Table 206: TCP/IP interface (F5_{hex}) – Common service

Service code	Service available		Service name	Description
	Class	Instance		
01 hex	Yes	Yes	Get_Attribute_All	Supplies contents of all attributes
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.11 Ethernet Link (F6 hex)

The "Ethernet Link Object" contains link-specific counter and status information for an Ethernet 802.3 communications interface. Each device must support exactly one instance of the Ethernet Link Object for each Ethernet IEEE 802.3 communications interface on the module. An Ethernet link object instance for an internal interface can also be used for the devices, e.g. an internal port with an integrated switch.

Instance 0 (Class Attributes)

Table 207.	Ethernet link	(F5.) –	Class
1 auto 207.	L'unerniet mik	$(\Gamma \mathcal{J}_{hex}) =$	Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	3 (0x0003)
2	Get	Max Instance	UDINT	Max. number of instances	3 (0x0003)
3	Get	Num Instances	UDINT	Number of the current	3 (0x0003)
				instanced connections	

Instance 1

Table 208: Ethernet link (F6 hex) – Instance 1

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Interface Speed	UDINT	Transfer rate	10 (0x0A) or 100 (0x64)
2	Get	Interface Flags	DWORD	Interface configuration and status information Bit 0: Link status Bit 1: Half/full lduplex Bit 24: Detection status Bit 5: Manual settings require reset Bit 6: Local hardware error Bit 731: Reserved	Value is dependent upon Ethernet connection.
3	Get	Physical Address	ARRAY of 6 UINTs	MAC layer address	MAC ID of the device
6	Set	Interface Control	STRUCT of:	Configuration of the physical interface	-
		Control Bits	WORD	Interface configuration bits Bit 0: Automatic detection Bit 1: Default duplex mode Bit 215: Reserved	0x0001
		Forced Interface Speed	UINT	Preset interface speed	10 (0x000A) or 100 (0x0064)
7	Get	Interface Type	USINT	Interface type Value 0: Unknown Value 1: Internal interface; e.g., in the case of an integrated switch Value 2: Twisted pair (e.g. 100Base-TX). Value 3: fiber glass (e.g. 100Base-FX). Value 4256: Reserved	2 (0x02) – Twisted Pair
8	Get	Interface Status	USINT	Interface status Value 0: Unknown Value 1: Interface active and ready to send/receive. Value 2: Interface deactivated. Value 3: Interface is testing Wert 4256: Reserved	-

uble 200. Enternet mix (10 hex) misturee 1								
Attribute ID	Access	Name	Data type	Description	Default value			
9	Get/ Set	Admin Status	USINT	Admin status: Value 0: Reserved Value 1: Interface active Value 2: Interface deactivated. Is this the only CIP interface, a request for deactivation will be receipted with error code 0x09 Value 3256: Reserved	1 (0x01)			
10	Get	Interface Label	SHORT_ STRING	Name of the interface	"Port 1"			

Table 208: Ethernet link (F6 hex) – Instance 1

Instance 2 – Port 2

Table 209: Ethernet link (F6 hex) – Instance 2

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Interface Speed	UDINT	Transfer rate	10 (0x000000A) or 100 (0x00000064)
2	Get	Interface Flags	DWORD	Interface configuration and status information Bit 0: Link status Bit 1: Half/full lduplex Bit 24: Detection status Bit 5: Manual settings require reset Bit 6: Local hardware error Bit 731: Reserved	Value is dependent upon Ethernet connection.
3	Get	Physical Address	ARRAY of 6 UINTs	MAC layer address	MAC-ID des Fieldbus couplers/ controllers
6	Set	Interface Control	STRUCT of:	Configuration of the physical interface	-
		Control Bits	WORD	Interface configuration bits Bit 0: Automatic detection Bit 1: Default duplex mode Bit 215: Reserved	0x0001
		Forced Interface Speed	UINT	Preset interface speed	10 (0x000A) or 100 (0x0064)
7	Get	Interface Type	USINT	Interface type Value 0: Unknown Value 1: Internal interface; e.g., in the case of an integrated switch Value 2: Twisted pair (e.g. 100Base-TX). Value 3: fiber glass (e.g. 100Base-FX). Value 4256: Reserved	2 (0x02) – Twisted Pair
8	Get	Interface Status	USINT	Interface status Value 0: Unknown Value 1: Interface active and ready to send/receive. Value 2: Interface deactivated. Value 3: Interface is testing Wert 4256: Reserved	-

tuble 20%. Editinet link (10 nex) instance 2									
Attribute ID	Access	Name	Data type	Description	Default value				
9	Get/ Set	Admin Status	USINT	Admin status: Value 0: Reserved Value 1: Interface active Value 2: Interface deactivated. Is this the only CIP interface, a request for deactivation will be receipted with error code 0x09 Value 3256: Reserved	1 (0x01)				
10	Get	Interface Label	SHORT_ STRING	Name of the interface	"Port 2"				

Table 209: Ethernet link (F6 hex) – Instance 2

Instance 3 – Internal Port 3

Table 210: Ethernet link	$(F6_{hex})$ – Instance 3
--------------------------	---------------------------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Interface Speed	UDINT	Transfer rate	100 (0x64)
2	Get	Interface Flags	DWORD	Interface configuration and status information	3 (0x03) – Link active (Bit 0), Full duplex (Bit 1)
3	Get	Physical Address	ARRAY of 6 UINTs	MAC layer address	MAC ID of the device
6	Set	Interface Control	STRUCT of:	Configuration of the physical interface	-
		Control Bits	WORD	Interface configuration bits	3 (0x03) – Link active (Bit 0), Full duplex (Bit 1)
		Forced Interface Speed	UINT	Baud rate	100 (0x64)
7	Get	Interface Type	UINT	Interface type	1 (0x01) – internal Port
8	Get	Interface Status	UINT	Interface status	1 (0x01) – active
9	Get	Admin Status	UINT	Admin status	1 (0x01) – active
10	Get	Interface Label	SHORT_ STRING	Name of the interface	"Internal Port 3"

Common Services

Table 211: Ethernet link (F6 hex) - Common service

Service code	Service available		Service-Name	Description
	Class	Instance		
01 hex	Yes	Yes	Get_Attribute_All	Supplies contents of all attributes
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

Note

Changes with service "Set_Attribute_Single" not directly effective! Attributes (particularly the attributes 6 and 9) which were changed over the service "Set_Attribute_Single", become only effective after the next Power-On-Reset of the controller.

12.3.5.12 Coupler/Controller Configuration (64 hex)

The fieldbus coupler configuration class allows reading and configuration of some important fieldbus/controller process parameters. The following listings explain in details all supported instances and attributes.

Instance 0 (Class Attributes)

Table 212: Coupler/Controller configuration (64 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	1 (0x0001)

Instance 1

Table 213: Coupler/Controller configuration (64 hex) – Instance 1

Attribute ID	Access	NV	Name	Data type	Description	Default value
5 (0x05)	Get	V	ProcessState	USINT	State of coupler/controller, error mask: Bit 0: Internal bus error Bit 3: Module diagnostics (0x08) Bit 7: Fieldbus error (0x80)	0
6 (0x06)	Get	V	DNS_i_ Trmnldia	UINT	Module diagnostics: Bit 07: Module number Bit 814: Module channel Bit 15: 0/1 Error, repair/arisen	0
7 (0x07)	Get	V	CnfLen. AnalogOut	UINT	Number of I/O bits for the analog output	-
8 (0x08)	Get	V	CnfLen. AnalogInp	UINT	Number of I/O bits for the analog input	-
9 (0x09)	Get	V	CnfLen. DigitalOut	UINT	Number of I/O bits for the digital output	-
10 (0x0A)	Get	V	CnfLen. DigitalInp	UINT	Number of I/O bits for the digital input	-
11 (0x0B)	Set	NV	Bk_Fault_ Reaction	USINT	 Fieldbus error reaction 0: stop local I/O cycles 1: set all output to 0 2: no error reaction 3: no error reaction 4: PFC task takes over control of the outputs (apply to controllers) 	1
1226 (0x0C0x1A)	Reserve	d for	compatibility	to DeviceNe	t	
4043 (0x280x2B)	Reserve	d for	compatibility	to DeviceNe	t	
45 (0x2D)	Get	V	Bk_Led_Err _Code	UINT	I/O LED error code	0
46 (0x2E)	Get	V	Bk_Led_Err Arg	UINT	I/O LED error argument	0

Attribute ID	Access	NV	Name	Data type	Description	Default value
47 (0x2F)	Get	V	Bk_Diag_Value	UINT	Contains the diagnostic byte Note: This attribute has to be read out before attribute 6 (DNS_i_Trmnldia), because during the reading of attribute 6 the diagnostic byte contains the data of the next diagnostic	0
100 (0x64)	Set	NV	Bk_FbInp_Var _Cnt	UINT	Determines the number of bytes for the PFC input fieldbus variables, which are added to the assembly object. This number is added to the consuming path. assembly instances (101103)	0
101 (0x65)	Set	NV	Bk_FbOut_Var _Cnt	UINT	Determines the number of bytes for the PFC output fieldbus variables, which are added to the assembly object. This number is added to the producing path. assembly instances (104109)	0
102 (0x66)	Set	NV	Bk_FbInp_Plc Only_Var_Cnt	UINT	Determines the number of bytes for the PFC input fieldbus variables, which are received via assembly instance 111.	4
103 (0x67)	Set	NV	Bk_FbInp_Start Plc_Var_Cnt	UINT	Determines starting from which position the PFC input fieldbus variables for the assembly instance 111 to be received.	0
104 (0x68)	Set	NV	Bk_FbOut_Plc Only_Var_Cnt	UINT	Determines the number of bytes for the PFC output fieldbus variables, which are received via assembly instance 110.	4
105 (0x69)	Set	NV	Bk_FbOut_Star t Plc_Var_Cnt	UINT	Determines starting from which position the PFC output fieldbus variables for the assembly instance 110 to be received.	0

120 (0x78)	Set	NV	Bk_Header CfgOT	UINT	Indicates whether the RUN/IDLE header is used originator → target direction 0: is used 1: is not used	0x0000
121(0x79)	Set	NV	Bk_Header CfgTO	UINT	Indicates whether the RUN/IDLE header is used originator → target direction 0: is used 1: is not used	0x0001

Common Service

Table 214: Coupler/Controller configuration (64 hex) - Common service

Service code	Service available		Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.13 Discrete Input Point (65 hex)

This class allows the reading of data of a particular digital input point.

Instance 0 (Class-Attributes)

Table 215: Discrete input point (65 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 1 ... 255 (Digital output value 1 up to 255)

Table 216: Discrete input point (65 hex) – Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DipObj_Value	BYTE	Digital output (only Bit 0 is valid)	-

Common Services

Table 217: Discrete input point (65 hex) - Common service

Service code	Service available		Service name	Description	
	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	

12.3.5.14 Discrete Input Point Extended 1 (69 hex)

The extension of the "Discrete Input Point" class enables the reading of data from a fieldbus node that contains over 255 digital input points (DIPs). The instance

scope of the "Discrete Input Point Extended 1" class covers DIPs from 256 to 510 in the fieldbus node.

Instance 0 (Class Attributes)

	Table 218:	Discrete Ir	put Point	Extended	1(69	hex_{1} –	Class
--	------------	-------------	-----------	----------	------	-------------	-------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 256 ... 510 (Digital input value 256 up to 510)

Table 219: Discrete output point (66 hex) – Instance 256...510

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DipObj_Value	BYTE	Digital input	-
				(only Bit 0 is valid)	

Common Services

Table 220: Discrete Input Point Extended 1 (69 hex) – Common service

Service	Service available		Service-name	Description	
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate	
				attribute	

12.3.5.15 Discrete Input Point Extended 2 (6D hex)

The extension of the "Discrete Input Point" class enables the reading of data from a fieldbus node that contains over 510 digital input points (DIPs). The instance scope of the "Discrete Input Point Extended 2" class covers DIPs from 511 to 765 in the fieldbus node.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 511 ... 765 (Digital input value 511 up to 765)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AipObj_Value	ARRAY of BYTE	Analog input	-
2	Get	AipObj_Value_Length	USINT	Length of the input data AipObj_Value (in byte)	-

Table 222: Analog input point (67 hex) - Instance 1

Common Services

Table 223: Analog input point	$(67_{hex}) - Common s$	service
-------------------------------	-------------------------	---------

Service code	Service available		Service name	Description	
	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	

12.3.5.16 Discrete Input Point Extended 3 (71 hex)

The extension of the "Discrete Input Point" class enables the reading of data from a fieldbus node that contains over 765 digital input points (DIPs). The instance scope of the "Discrete Input Point Extended 3" class covers DIPs from 766 to 1020 in the fieldbus node.

Instance 0 (Class-Attributes)

Table 224: Discrete Input Point Extended 3 (71 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 766 ... 1020 (Digital input value 766 up to 1020)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DipObj_Value	BYTE	Digital input (only Bit 0 is valid)	-

Table 225: Discrete Input Point Extended 3 (71 hex) – Instance 766...1020

Common Services

Table 226: Discrete Input Point Extended 3 (71 hex) – Common service

Service	Service available		Service-Name	Description	
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	

12.3.5.17 Discrete Output Point (66 hex)

This class enables data exchange for a particular digital output point.

Instance 0 (Class Attributes)

Table 227	: Discrete	Output Point	(66 hex) – Class
-----------	------------	--------------	---------	-----------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 1 ... 255 (Digital output value 1 up to 255)

Table 228: Discrete Output Poin	t (66 $_{hex}$) – Instance 1255
---------------------------------	----------------------------------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DopObj_Value	BYTE	Digital Output (only Bit 0 valid)	-

Common Services

Table 229[•] Discrete Output Point (66 hor) – Common service

Service	Service available		Service-Name	Description		
code	Class	Instance				
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute		
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value		

12.3.5.18 Discrete Output Point Extended 1 (6A hex)

The extension of the "Discrete Output Point" class enables the exchange of data from a fieldbus node that contains over 255 digital output points (DOPs). The instance scope of the "Discrete Output Point Extended 1" class covers DOPs from 256 to 510 in the fieldbus node.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Table 220: Discrete Output Doint Extended 1 (6A) Cl

Instance 256 ... 510 (Digital output value 256 up to 510)

Table 231:	Discrete	Output	Point Extended	1 ($(6A_{hex}) -$	Instance 25651	0
					(non)		

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DopObj_Value	BYTE	Digital Output (only Bit 0 valid)	-

Common Services

Table 232: Discrete Output Point Extended 1 (6A) – Common service

Service Service available		Service-Name	Description	
code	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.19 Discrete Output Point Extended 2 (6E hex)

The extension of the "Discrete Output Point" class enables the exchange of data from a fieldbus node that contains over 510 digital output points (DOPs). This instance cope of the "Discrete Output Point Extended 1" class covers the DOPs from 511 to 765 in the fieldbus node.

Instance 0 (Class Attributes)

Table 233: Discrete Output Point Extended 2 (6E hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value	
1	Get	Revision	UINT	Revision of this object	1 (0x0001)	
2	Get	Max Instance	UINT	Max. number of instances	-	

Instance 511 ... 765 (Digital output value 511 up to 765)

Table 234: Discrete Output Point Extended 2 (6E hex) – Instance 511...765

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DopObj_Value	BYTE	Digital Output (only Bit 0 valid)	-

Common Services

Table 235: Discrete Output Point Extended 2 ($6E_{hex}$) – Common service							
Service	Service available		Service-Name	Description			
code	Class	Instance					
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute			
10 hex	No	Yes	Set Attribute Single	Modifies an attribute value			

ut Daint Euton dad 2 ((E))

12.3.5.20 Discrete Output Point Extended 3 (72 hex)

The extension of the "Discrete Output Point" class enables the exchange of data from a fieldbus node that contains over 765 digital output points (DOPs). The instance scope of the "Discrete Output Point Extended 2" class covers DOPs from 766 to 1020 in the fieldbus node.

Instance 0 (Class Attributes)

Table 236: Disc	crete Output	Point Extended	13	$(72_{hex}) - Class$

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 766 ... 1020 (Digital Output value 766 up to 1020)

|--|

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	DopObj_Value	BYTE	Digital Output (only Bit 0 valid)	-

Common Services

Table 238: Discrete Output Point Extended 2 (6E hex) - Common service

Service Service available		Service name	Description		
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value	

12.3.5.21 Analog Input Point (67 hex)

This class enables the reading of data of a particular analog input point (AIP). An analog input point is part of an analog input module.

Instance 0 (Class Attributes)

Table 239: Analog Input Point (67 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 1 ... 255 (Analog input 1 up to 255)

Table 240: An	alog Input	Point (67	hex) - Ir	stance 1	2:	55

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AipObj_Value	ARRAY of BYTE	Analog Input	-
2	Get	AipObj_Value_ Length	USINT	Length of the output data AopObj_Value (in byte)	_

Common Services

Table 241: Analog Input Point (67 hex) - Common service

Service	Service available		Service name	Description
code	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.22 Analog Input Point Extended 1 (6B hex)

The extension of the "Analog Input Point" class enables the reading of data from a fieldbus node that contains over 255 analog outputs (AIPs). The instance scope of the "Analog Input Point Extended 1" class covers AIPs from 256 to 510 in the fieldbus node.

Instance 0 (Class Attributes)

Table 242: Analog Input Point Extended 1 (6B hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 256 ... 510 (Analog Input value 256 up to 510)

Table 212. Amelog I	mout Daint Extanded	1 (4D)) Instance	~ 256 510	
Table 245. Analog I	πουι Ροιπι εχιεπαεά		hay I — Instanc	e 200 010	
		(110.7		

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AipObj_Value	ARRAY of BYTE	Analog Input	-
2	Get	AipObj_Value_ Length	USINT	Length of the output data AopObj_Value (in byte)	-

Common Services

Table 244:	Analog Inr	ut Point Ex	tended 1 (6F	$(3_{hav}) - ($	Common servic	е
1 4010 2 1 1.	r maios mp	ut i onnt LA		nex)		•

Service	Service available		Service available		Service name	Description
code	Class	Instance				
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate		
				attribute		

12.3.5.23 Analog Input Point Extended 2 (6F hex)

The extension of the "Analog Input Point" class enables the reading of data from a fieldbus node that contains over 510 analog outputs (AIPs). The instance scope of the "Analog Input Point Extended 2" class covers AIPs from 511 to 765 in the fieldbus node.

Instance 0 (Class Attributes)

Table 245: Analog Input Point Extended 2 (6F hex) – Class	
---	--

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 511 ... 765 (Analog Input 511 up to 765)

Table 246: Analog Input Point Extended 2 ((6F hex) – Instance 511 765
--	-----------------------------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AipObj_Value	ARRAY of BYTE	Analog Input	-
2	Get	AipObj_Value_ Length	USINT	Length of the output data AopObj_Value (in byte)	-

Common Services

Table 247: Analog Input Point Extended 2 (6F hex) – Common service

Service	Service available		Service name	Description
code	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.24 Analog Input Point Extended 3 (73 hex)

The extension of the "Analog Input Point" class enables the reading of data from a fieldbus node that contains over 765 analog outputs (AIPs). The instance scope of the "Analog Input Point Extended 3" class covers AIPs from 766 to 1020 in the fieldbus node.

Instance 0 (Class Attributes)

Table 248:	Analog Inp	ut Point Exte	nded 3 (73	_{hex}) – Class
------------	------------	---------------	------------	--------------------------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 766 ... 1020 (Analog input value 766 up to 1020)

Table 249: Analog Input Point Extended 3 (73)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AipObj_Value	ARRAY of BYTE	Analog Input	-
2	Get	AipObj_Value_ Length	USINT	Length of the output data AopObj_Value (in byte)	-

Common Services

Table 250: Analog Input Point Extended 3 (73 hex) – Common service

Service	Service	available	Service name	Description
code	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate
				attribute

12.3.5.25 Analog Output Point (68 hex)

This class enables the reading of data of a particular analog output point (AOP). An analog output point is part of an analog output module.

Instance 0 (Class Attributes)

Table 251: Analog Output Point (68 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 1 ... 255 (Analog output value 1 up to 255)

Table 252: Analog Output	ut Point (68 $_{hex}$) –	Instance 1255

Attribute	Access	Name	Data type	Description	Default
ID					value
1	Get	AopObj_Value	ARRAY	Analog Output	-
			of BYTE		
2	Get	AopObj_Value	USINT	Length of the output data	-
		_Length		AopObj_Value (in byte)	

Common Services

Table 253: Analog Output Point (68 hex) – Common service

Service	Service available		Service name	Description
code	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.26 Analog Output Point Extended 1 (6C hex)

The extension of the "Analog Output Point" class enables the exchange of data from a fieldbus node that contains over 255 analog output points (AOPs). The instance scope of the "Discrete Output Point Extended 1" class covers AOPs from 256 to 510 in the fieldbus node.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Table 254: Analog Output Point Extended 1 (6C hex) – Class

Instance 256 ... 510 (Analog output value 256 up to 510)

1 abic 255. Al	Tuble 255. Analog Output Font Extended 1 (66 hex) Instance 256510					
Attribute ID	Access	Name	Data type	Description	Default value	
1	Get	AopObj_Value	ARRAY of BYTE	Analog Output	-	
2	Get	AopObj_Value Length	USINT	Length of the output data AopObi Value (in byte)	-	

Table 255: Analog Output Point Extended 1 (6C hex) – Instance 256...510

Common Services

Table 256: Analog Output Point Extended 1 (6C hex) - Common service

Service	Service available		Service available Service name		Service name	Description	
code	Class	Instance					
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute			
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value			

12.3.5.27 Analog Output Point Extended 2 (70 hex)

The extension of the "Analog Output Point" class enables the exchange of data from a fieldbus node that contains over 510 analog output points (AOPs). The instance scope of the "Discrete Output Point Extended 2" class covers AOPs from 511 to 765 in the fieldbus node.

Instance 0 (Class Attributes)

Table 257: Analog Output Point Extended 2 (70 hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 511 ... 765 (Analog output value 511 up to 765)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AopObj_Value	ARRAY of BYTE	Analog Output	-
2	Get	AopObj_Value _Length	USINT	Length of the output data AopObj_Value (in byte)	_

Table 258: Analog Output Point Extended 2 (70,...) – Instance 511 765

Common Services

Table 259: Analog Output Point Extended 2 (70 her) – Common service

Service	Service available		Service name	Description	
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value	

12.3.5.28 Analog Output Point Extended 3 (74 hex)

The extension of the "Analog Output Point" class enables the exchange of data from a fieldbus node that contains over 765 analog output points (AOPs). The instance scope of the "Discrete Output Point Extended 3" class covers AOPs from 766 to 1020 in the fieldbus node.

Instance 0 (Class Attributes)

Table 260: Analog Output Point Extended 3 (74 $_{hex}$) – Class						
Attribute ID	Access	Name	Data type	Description	Default value	
1	Get	Revision	UINT	Revision of this object	1 (0x0001	
2	Get	Max Instance	UINT	Max. number of instances	-	

Table 260: Analog Output Daint Extended 2 (74) Cl

Instance 766 ... 1020 (Analog output value 766 up to 1020)

Table 261: Analog Output Point Extended 3 (74 hex) – Instance 766...1020

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	AopObj_Value	ARRAY of BYTE	Analog Output	-
2	Get	AopObj_Value _Length	USINT	Length of the output data AopObj_Value (in byte)	-

Common Services

Table 262: Analog Output Point Extended 3 (74 hex) – Common service

	Service	Service available		Service name	Description	
code Class Instance						
	0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	
	10 hex	No Yes		Set_Attribute_Single	Modifies an attribute value	

12.3.5.29 Module Configuration (80 hex)

Instance 0 (Class Attributes)

Table 263: Module Configuration	$(80_{hex}) - Class$
---------------------------------	----------------------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 1 ... 255 (Clamp 0 up to 254)

Table 264: Module Configuration (80 hex) – Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	ModulDescription	WORD	Description of connected modules (module 0 = coupler/controller) Bit 0: Module has inputs Bit 1: Module has outputs Bit 8-14: Data width internally in bit 15: 0/1 Analog/digital module	-
				For analog modules, bits 0-14 identify the module type, e.g., 401 for module 750-401	

Common Services

Table 265: Module Configuration (80 hex) - Common service

Service	Service	available	Service name	Description	
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate	
				attribute	

12.3.5.30 Module Configuration Extended (81 hex)

The same as "Module Configuration (80 $_{hex}$)" but with a description of module 255.

Instance 0 (Class Attributes)

Table 266: Module Configuration Extended (81 hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	-

Instance 256 (Clamp 255)

Table 267: Module	Configuration	Extended (81	her) -	Instance 256
10010 =07.1110000	Comparation		nex/	1110000100 =000

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	ModulDescription	WORD	Description of connected modules (module 0 = coupler/controller) Bit 0: Module has inputs Bit 1: Module has outputs Bit 8-14: Data width internally in Bit 15: 0/1 Analog/digital module	_
				For analog modules, bits 0-14 identify the module type, e.g., 401 for module 750-401	

Common Services

Table 268: Module Configuration Extended (81 hex) – Common service

Service	Service available		Service-Name	Description	
code	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate	
				attribute	

12.3.5.31 Input Fieldbus Variable USINT (A0 hex)

The class enables the reading of data from a particular PLC input variable.

For WAGO-I/O-PRO or CoDeSys, that means the PLC addresses for output variables %QB2552...%QB2806.

Instance 0 (Class Attributes)

Table 269: Input fieldbus variable USINT (A0 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x0FF)

Instance 1...255 (Input variable 1 up to 255)

Table 270: Input fieldbus variable USINT (A0 hex) - Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	USINT	Fieldbus input variable of the PLC	0

Common Services

Table 271: Input fieldbus variable USINT (A0 hex) - Common service

Service code	Service available		Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Sing le	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Sing le	Modifies an attribute value

12.3.5.32 Input Fieldbus Variable USINT Extended 1 (A1 hex)

The extension of the "Input Fieldbus Variable USINT" class enables the reading of PLC input variable data. The instance scope of the "Input Fieldbus Variable USINT Extended 1" class covers the PLC input variable data from 256 to 510.

For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for input variables %IB2807...%IB3061.

Instance 0 (Class Attributes)

Table 272: Input Fieldbus Variable USINT Extended 1 (A1 hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x00FF)

Instance 256...510 (Input variable 256 up to 510)

Table 273: Input fieldbus variable USINT Extended 1 (A1 hex) – Instance 256...510

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	USINT	Fieldbus-Input variable of the SPS	0

Common Services

Table 274: Input fieldbus variable USINT Extended 1 (A1 hex) – Common service

Servicecode	Service available		Service-Name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value.

12.3.5.33 Input Fieldbus Variable USINT Extended 2 (A2 hex)

The extension of the "Input Fieldbus Variable USINT" class enables the reading of PLC input variable data. The instance scope of the "Input Fieldbus Variable USINT Extended 1" class covers the PLC input variable data from 256 to 510. For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for input variables %IB2807...%IB3061.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	2 (0x0002)

Instance 511...512 (Input variable 511 up to 512)

Table 276	Input Fieldbus	Variable USINT	Extended 2 (A2)) - Instance	511 512
1 able 2/0.	input Fieldous		Extended 2 (AZ_{hex}) = mstance	511512

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	USINT	Fieldbus-Input variable of the SPS	0

Common Services

Table 277: In	put fieldbus variable	USINT Extended 2 ((A2 _{he}	x) - Common service

Servicecode	Service available		Service-Name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.34 Output Fieldbus Variable USINT (A3 hex)

The class enables the exchange of data from a particular PLC output variable.

For WAGO-I/O-PRO or CoDeSys, that means the PLC addresses for output variables %QB2552...%QB2806.

Instance 0 (Class Attributes)

Table 278: Output fieldbus variable USINT (A3 hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x0FF)

Instance 1...255 (Output variables 1 up to 255)

Table 279: Output fieldbus variable USINT (A3 hex) - Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Fb_Out_Var	USINT	Fieldbus Output variable of the	0
				PLC	

Common Services

Table 280: Output fieldbus variable USINT (A3 hex) - Common service

Service code	Service available		Service name	Description	
	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	

12.3.5.35 Output Fieldbus Variable USINT Extended 1 (A4 hex)

The extension of the "Output Fieldbus Variable USINT" class enables the exchange of PLC output variable data. The instance scope of the "Output Fieldbus Variable USINT Extended 1" class covers the PLC output variable data from 256 to 510.

For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for output variables %QB2807...%QB3061.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x00FF)

Table 281: Output Fieldbus variable USINT Extended 1 (A4 hex) – Class

Instance 256...510 (Output variable 256 up to 510)

Table 282: Output Fieldbus Variable USINT Extended 1 (A4 hex) – Instance 256...510

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Fb_Out_Var	USINT	Fieldbus output variable of SPS	0

Common Services

Table 283: Output Fieldbus Variable USINT Extended 1 (A4 hex) – Common service

Servicecode	Service available		Service-Name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.36 Output Fieldbus Variable USINT Extended 2 (A5 hex)

The extension of the "Output Fieldbus Variable USINT" class enables the exchange of PLC output variable data. The instance scope of the "Output Fieldbus Variable USINT Extended 2" class covers the PLC output variable data from 511 to 512.

For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for output variables %QB3062...%QB3063.

Instance 0 (Class Attributes)

1000 201. 00	uore 2011. Output Herdous Variable Obri (1 Enterhada 2 (His nex) - Class						
Attribute	Access	Name	Data type	Description	Default		
ID					value		
1	Get	Revision	UINT	Revision of this object	1 (0x0001)		
2	Get	Max Instance	UINT	Max. number of instances	2 (0x0002)		

Table 284: Output Fieldbus Variable USINT Extended 2 (A5 hex) - Class

Instance 511...512 (Output variable 511 up to 512)

Table 285: Output Fieldbus Variable USINT Extended 2 (A5 hex) – Instance 511...512

Attribute	Access	Name	Data type	Description	Default
ID					value
1	Get	Fb_Out_Var	USINT	Fieldbus-Output variable of SPS	0

Common Services

Tabelle 286: Output Fieldbus Variable USINT Extended 2 (A5 hex) – Common service

Servicecode	Service	available	Service-Name	Description
	Class	Instance		
0E hex	Ja	Ja	Get_Attribute_Single	Supplies contents of the appropriate
				attribute
12.3.5.37 Input Fieldbus Variable UINT (A6 hex)

This class allows the reading of data from a particular PLC input variable. For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for input variables %IW1276...%IW1530.

Instance 0 (Class Attributes)

Table 287: Input fieldbus variable UINT (A6 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x0FF)

Instance 1...255 (Input variable 1 up to 255)

Table 288: Input fieldbus variable UINT (A6 hex) - Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	UINT	Fieldbus Input variable of the PLC	0

Common Services

Table 289: Input fieldbus variable UINT (A6 hex) - Common service

Service code	Service	available	Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.38 Input Fieldbus Variable UINT Extended 1 (A7 hex)

The extension of the "Input Fieldbus Variable UINT" class enables the reading of PLC input variable data. The instance scope of the "Input Fieldbus Variable UINT Extended 1" class covers the PLC input variable data from the PLC input variable 256.

For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for input variable %IW1531.

Instanz 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	1 (0x0001)

Table 290: Input Fieldbus Variable UINT Extended 1 (A7 hex) - Class

Instanz 256 (Input variable 256)

Table 291: Input Fieldbus Variable UINT Extended 1 (A7 hex) - Instance 256

Attribute ID	Access	Name	Data type	Description	Default
1	Set	Fb_In_Var	UINT	Fieldbus Input variable of the PLC	0

Common Services

Table 292: Input Fieldbus Variable UINT Extended 1 (A7 hex) – Common service

Service	Service available		Service Name	Description
code	Class	Instance		
0E hex	Ja	Ja	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	Nein	Ja	Set_Attribute_Single	Modifies an attribute value

12.3.5.39 Output Fieldbus Variable UINT (A8 hex)

The class enables the exchange of data from a particular PLC output variable. For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for output variables %QW1276...%QW1530.

Instance 0 (Class Attributes)

Table 293: Output fieldbus variable UINT (A8 hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	255 (0x0FF)

Instance 1...255 (Output variable 1 up to 255)

Table 294: Output fieldbus variable UINT (A8 hex) - Instance 1...255

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Fb_Out_Var	UINT	Fieldbus output variable of the PLC	0

Common Services

Table 295: Output fieldbus variable UINT (A8 hex) - Common service

Service code	Service available		Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.40 Output Fieldbus Variable UINT Extended 1 (A9 hex)

The extension of the "Output Fieldbus Variable UINT" class enables the exchange of PLC output variable data. The instance scope of the "Output Fieldbus Variable UINT Extended 1" class covers the PLC output variable data from PLC output variables 256.

For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for output variable %QW1531.

Instance 0 (Class Attributes)

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	1 (0x0001)

Table 296: Output Fieldbus Variable UINT Extended 1 (A9 hex) - Class

Instance 256 (Output variable 256)

Table 297: Output Fieldbus Variable UINT Extended 1 (A9 hex) – Instance 256

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Fb_Out_Var	UINT	Fieldbus output variable of the SPS	0

Common Services

Table 298: Output Fieldbus Variable UINT Extended 1 (A9 hex) – Common service

Servicecode	Service available		Service-Name	Description
	Class	Instance		
0E hex	Ja	Ja	Get_Attribute_Single	Supplies contents of the appropriate attribute

12.3.5.41 Input Fieldbus Variable UDINT (AA hex)

This class allows the reading of data from a particular PLC input variable. For WAGO-I/O-*PRO* or CoDeSys, that means the PLC addresses for input variables %ID638 ... %ID765.

Instance 0 (Class Attributes)

Table 299: In	put fieldbus	variable	UDINT ((AA hex)	- Class
---------------	--------------	----------	---------	----------	---------

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	128 (0x080)

Instance 1...128 (Input variable 1 up to 128)

Table 300: Input fieldbus variable UDINT (AA hex) - Instance 1...128

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	UDINT	Fieldbus input variable of the PLC	0

Common Services

Table 301: Input fieldbus variable UDINT (AA hex) - Common service

Service code	Service available		Service name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.42 Input Fieldbus Variable UDINT Offset (AB hex)

This class allows the reading of data from a particular PLC input variable. With an offset of 2 bytes to the addresses of the "Input Fieldbus Variable UDINT (AA hex)" class, that means for WAGO-I/O-*PRO* or CoDeSys the PLC addresses for the input variables %ID638 ... %ID765.

Information about Using the Offset

"Offset of 2 bytes" means:

If instance 1 of this class is read, you obtain High-Word of the address %ID638 and the Low-Word of the address %ID639, etc.

If instance 128 is read, you obtain only the High-Word of the address %ID765.

Instance 0 (Class Attributes)

Table 302: Input Fieldbus Variable UDINT Offset (AB hex) – Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	128 (0x080)

Instance 1...128 (Input variable 1 up to 128)

Table 303: Input Fieldbus Variable UDINT Offset (AB hex) – Instance 1...128

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_In_Var	UDINT	Fieldbus-Input variable of the SPS	0

Common Services

Table 304: Input Fieldbus Variable UDINT Offset (AB hex) - Common service

Servicecode	Service available		Service-Name	Description
	Class	Instance		
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute
10 hex	No	Yes	Set_Attribute_Single	Modifies an attribute value

12.3.5.43 Output Fieldbus Variable UDINT (AC hex)

The class enables the exchange of data from a particular PLC output variable. For WAGO-I/O-PRO or CoDeSys, that means the PLC addresses for output variables %QD638...%QD765.

Instance 0 (Class Attributes)

Table 305: Input fieldbus variable UDINT (AA hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	128 (0x080)

Instance 1...128 (Output variable 1 up to 128)

Table 306: Input fieldbus variable UDINT (AA hex) - Instance 1...128

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_Out_Var	UDINT	Fieldbus output variable of the PLC	0

Common Services

Table 307: Input fieldbus variable UDINT (AA hex) - Common service

Service code	Service available		Service name	Description	
	Class	Instance			
0E hex	Yes	Yes	Get_Attribute_Single	Supplies contents of the appropriate attribute	

12.3.5.44 Output Fieldbus Variable UDINT Offset (AD hex)

The class enables the exchange of data from a particular PLC output variable. With an offset of 2 bytes to the addresses of the "Output Fieldbus Variable UDINT (AC $_{hex}$)" class, that means for WAGO-I/O-*PRO* or CoDeSys the PLC addresses for %QD638 ... %QD765.

Information about Using the Offset

"Offset of 2 bytes" means:

If instance 1 of this class is read, you obtain High-Word of the address %ID638 and the Low-Word of the address %ID639, etc.

If instance 128 is read, you obtain only the High-Word of the address %ID765..

Instance 0 (Class Attributes)

Table 308: Output Fieldbus Variable UDINT Offset (AD hex) - Class

Attribute ID	Access	Name	Data type	Description	Default value
1	Get	Revision	UINT	Revision of this object	1 (0x0001)
2	Get	Max Instance	UINT	Max. number of instances	128 (0x0080)

Instance 1...128 (Output variable 1 up to 128)

Table 309: Output Fieldbus Variable UDINT Offset (AD hex) – Instance 1...128

Attribute ID	Access	Name	Data type	Description	Default value
1	Set	Fb_Out_Var	UDINT	Fieldbus output variable of the SPS	0

Common Services

Table 310: Output Fieldbus Variable UDINT Offset (AD hex) - Common service

Servicecode	Service available		Service available		Service-Name	Description
	Casse Instance					
0E hex	Yes Yes		Get_Attribute_Single	Supplies contents of the appropriate attribute		

13 I/O Modules

13.1 Overview

For modular applications with the WAGO-I/O-SYSTEM 750, different types of I/O modules are available

- Digital Input Modules
- Digital Output Modules
- Analog Input Modules
- Analog Output Modules
- Special Modules
- System Modules

For detailed information on the I/O modules and the module variations, refer to the manuals for the I/O modules.

You will find these manuals on DVD ROM "AUTOMATION Tools and Docs" (order no. 0888-0412) or on the WAGO web pages under <u>http://www.wago.com</u> \rightarrow Service \rightarrow Download \rightarrow Documentation.

Information

More Information about the WAGO-I/O-SYSTEM

Current information on the modular WAGO-I/O-SYSTEM is available in the Internet under: <u>http://www.wago.com</u>

Ĭ

13.2 Process Data Architecture for MODBUS/TCP

With some I/O modules, the structure of the process data is fieldbus specific.

MODBUS/TCP process image uses a word structure (with word alignment). The internal mapping method for data greater than one byte conforms to the Intel format.

The following section describes the process image for various WAGO-I/O-SYSTEM 750 and 753 I/O modules with MODBUS/TCP.

NOTICE

Equipment damage due to incorrect address!

Depending on the specific position of an I/O module in the fieldbus node, the process data of all previous byte or bit-oriented modules must be taken into account to determine its location in the process data map.

The structure of the process data mapping is identical for the PFC process image of the programmable fieldbus controller.

13.2.1 Digital Input Modules

Digital input modules supply one bit of data per channel to specify the signal state for the corresponding channel. These bits are mapped into the Input Process Image.

Some digital modules have an additional diagnostic bit per channel in the Input Process Image. The diagnostic bit is used for detecting faults that occur (e.g., wire breaks and/or short circuits).

When analog input modules are also present in the node, the digital data is always appended after the analog data in the Input Process Image, grouped into bytes.

13.2.1.1 1 Channel Digital Input Module with Diagnostics

750-435

Table 311: 1 Channel Digital Input Module with Diagnostics

		Input	Process	Image
--	--	-------	---------	-------

input i rote	coo image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						Diagnostic bit S 1	Data bit DI 1

13.2.1.2 2 Channel Digital Input Modules

750-400, -401, -405, -406, -410, -411, -412, -427, -438, (and all variations), 753-400, -401, -405, -406, -410, -411, -412, -427

Table 312: 2 Channel Digital Input Modules

Input Proc	Input Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
						Data bit	Data bit					
						DI 2	DI 1					
						Channel 2	Channel 1					

13.2.1.3 2 Channel Digital Input Module with Diagnostics

750-419, -421, -424, -425, 753-421, -424, -425

Table 313: 2 Channel Digital Input Module with Diagnostics

Input Proc	Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
				Diagnostic	Diagnostic	Data bit	Data bit						
				bit S 2	bit S 1	DI 2	DI 1						
				Channel 2	Channel 1	Channel 2	Channel 1						

13.2.1.4 2 Channel Digital Input Module with Diagnostics and Output Process Data

750-418, 753-418

The digital input module supplies a diagnostic and acknowledge bit for each input channel. If a fault condition occurs, the diagnostic bit is set. After the fault condition is cleared, an acknowledge bit must be set to re-activate the input. The diagnostic data and input data bit is mapped in the Input Process Image, while the acknowledge bit is in the Output Process Image.

Table 314: 2 Channel Digital Input Module with Diagnostics and Output Process Data

Input Proce	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Diagnostic	Diagnostic	Data bit	Data bit
				bit S 2	bit S 1	DI 2	DI 1
				Channel 2	Channel 1	Channel 2	Channel 1

Output P	Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
				Acknowledge- ment bit Q 2 Channel 2	Acknowledge- ment bit Q 1 Channel 1	0	0						

13.2.1.5 4 Channel Digital Input Modules

750-402, -403, -408, -409, -414, -415, -422, -423, -428, -432, -433, -1420, -1421, -1422

753-402, -403, -408, -409, -415, -422, -423, -428, -432, -433, -440

Table 315: 4 Channel Digital Input Modules

Input Process	Image
---------------	-------

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Data bit DI 4	Data bit DI 3	Data bit DI 2	Data bit DI 1
				Channel 4	Channel 3	Channel 2	Channel 1

13.2.1.6 8 Channel Digital Input Modules

750-430, -431, -436, -437, -1415, -1416, -1417 753-430, -431, -434

Table 316: 8 Channel Digital Input Modules

Input Proc	Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit						
DI 8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1						
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1						

I/O Modules 301

13.2.1.7 16 Channel Digital Input Modules

750-1400, -1402, -1405, -1406, -1407

Table 317: 16 Channel Digital Input Modules

Input Process Image

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
bit	bit	bit	bit	bit	bit	bit	bit	bit DI	bit						
DI 16	DI 15	DI 14	DI 13	DI 12	DI 11	DI 10	DI 9	8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1
Chann	Chan	Chan	Chan	Chan	Chan	Chann	Chan	Chan	Chan	Chan	Chan	Chan	Chan	Chan	Chan
el 16	nel 15	nel 14	nel 13	nel 12	nel 11	el 10	nel 9	nel 8	nel 7	nel 6	nel 5	nel 4	nel 3	nel 2	nel 1

13.2.2 Digital Output Modules

Digital output modules use one bit of data per channel to control the output of the corresponding channel. These bits are mapped into the Output Process Image.

Some digital modules have an additional diagnostic bit per channel in the Input Process Image. The diagnostic bit is used for detecting faults that occur (e.g., wire breaks and/or short circuits). For modules with diagnostic bit is set, also the data bits have to be evaluated.

When analog output modules are also present in the node, the digital image data is always appended after the analog data in the Output Process Image, grouped into bytes.

13.2.2.1 1 Channel Digital Output Module with Input Process Data

750-523

The digital output modules deliver 1 bit via a process value Bit in the output process image, which is illustrated in the input process image. This status image shows "manual mode".

Table 318: 1 Channel Digital Output Module with Input Process Data

Input Proc	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						not used	Status bit "Manual Operation"

Output Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
						not used	controls DO 1 Channel 1				

13.2.2.2 2 Channel Digital Output Modules

750-501, -502, -509, -512, -513, -514, -517, -535, (and all variations), 753-501, -502, -509, -512, -513, -514, -517

Table 319: 2 Channel Digital Output Modules

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
						controls	controls					
						DO 2	DO 1					
						Channel 2	Channel 1					

13.2.2.3 2 Channel Digital Input Modules with Diagnostics and Input Process Data

750-507 (-508), -522, 753-507

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

 Table 320: 2 Channel Digital Input Modules with Diagnostics and Input Process Data

 Input Process Image

Input Proc	ess image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						Diagnostic bit S 2 Channel 2	Diagnostic bit S 1 Channel 1

Output Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
						controls DO 2	controls DO 1				
						Channel 2	Channel 1				

750-506, 753-506

The digital output module has 2-bits of diagnostic information for each output channel. The 2-bit diagnostic information can then be decoded to determine the exact fault condition of the module (i.e., overload, a short circuit, or a broken wire). The 4-bits of diagnostic data are mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 321: 2 Channel Digital Input Modules with Diagnostics and Input Process Data 75x-506

Input Proc	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Diagnostic	Diagnostic	Diagnostic	Diagnostic
				bit S 5	OII S Z	DIL S I	$\mathbf{D}\mathbf{I}\mathbf{I}\mathbf{S}\mathbf{U}$
				Channel 2	Channel 2	Channel 1	Channel 1

Diagnostic bits S1/S0, S3/S2: = '00' Diagnostic bits S1/S0, S3/S2: = '01' Diagnostic bits S1/S0, S3/S2: = '10' standard mode

no connected load/short circuit against +24 V Short circuit to ground/overload

Output Pr	ocess Image	e					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				not used	not used	controls DO 2	controls DO 1
						Channel 2	Channel 1

13.2.2.4 4 Channel Digital Output Modules

750-504, -516, -519, -531, 753-504, -516, -531, -540

Table 322: 4 Channel Digital Output Modules

Output Process Image

Output IT	icess image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				controls DO 4	controls DO 3	controls DO 2	controls DO 1
				Channel 4	Channel 3	Channel 2	Channel 1

13.2.2.5 4 Channel Digital Output Modules with Diagnostics and Input Process Data

750-532

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 323: 4 Channel Digital Output Modules with Diagnostics and Input Process Data

Input Proc	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Diagnostic bit S 4 Channel 4	Diagnostic bit S 3 Channel 3	Diagnostic bit S 2 Channel 2	Diagnostic bit S 1 Channel 1

Diagnostic bit S = '0' no Error Diagnostic bit S = '1' overload

Diagnostic bit S = '1' overload, short circuit, or broken wire

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				controls	controls	controls	controls					
				DO 4	DO 3	DO 2	DO 1					
				Channel 4	Channel 3	Channel 2	Channel 1					

13.2.2.6 8 Channel Digital Output Module

750-530, -536, -1515, -1516 753-530, -534

Table 324: 8 Channel Digital Output Module

Output Process Image										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
controls	controls	controls	controls	controls	controls	controls	controls			
DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1			
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1			

13.2.2.7 8 Channel Digital Output Modules with Diagnostics and Input **Process Data**

750-537

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 325: 8 Channel Digital Output Modules with Diagnostics and Input Process Data

Input Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic				
bit	bit	bit	bit	bit	bit	bit	bit				
S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1				
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1				

Diagnostic bit S = '0' no Error Diagnostic bit S = '1' overload, short circuit, or broken wire

Output Process Image										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
controls	controls	controls	controls	controls	controls	controls	controls			
DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1			
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1			

16 Channel Digital Output Modules 13.2.2.8

750-1500, -1501, -1504, -1505

Table 326: 16 Channel Digital Output Modules

Outp	ut Pro	ocess I	mage												
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
controls	control	control	control	control	control	controls	control								
DO 16 Channel	DO 15	14	DO 13	DO 12	DO 11	DO 10 Channel	DO 9	DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1
16	Channe 115	Channe 114	Channe 113	Channe 112	Channe 111	10	Channe 19	Channe 18	Channe 17	Channe 16	Channe 15	Channe 14	Channe 13	Channe 12	Channe 11

13.2.2.9 8 Channel Digital Input/Output Modules

750-1502, -1506

Table 327: 8 Channel Digital Input/Output Modules

Input Proc	Input Process Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit
DI 8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1

Output Process Image							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
controls	controls	controls	controls	controls	controls	controls	controls
DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1

13.2.3 Analog Input Modules

The hardware of an analog input module has 16 bits of measured analog data per channel and 8 bits of control/status.

However, the coupler/controller with MODBUS/TCP does not have access to the 8 control/status bits.

Therefore, the coupler/controller with MODBUS/TCP can only access the 16 bits of analog data per channel, which are grouped as words and mapped in Intel format in the Input Process Image.

When digital input modules are also present in the node, the analog input data is always mapped into the Input Process Image in front of the digital data.

Information

Information to the structure of the Control/Status byte

For detailed information about the structure of a particular module's control/status byte, please refer to that module's manual. Manuals for each module can be found on the Internet under: http://www.wago.com.

13.2.3.1 1 Channel Analog Input Modules

750-491, (and all variations)

Table 328: 1 Channel Analog Input Modules

Input P	Input Process Image					
Offset	Byte De	Description				
	High Byte	Low Byte	Description			
0	D1	D0	Measured Value U _D			
1	D3	D2	Measured Value U _{ref}			

13.2.3.2 2 Channel Analog Input Modules

750-452, -454, -456, -461, -462, -465, -466, -467, -469, -472, -474, -475, 476, -477, -478, -479, -480, -481, -483, -485, -492, (and all variations), 753-452, -454, -456, -461, -465, -466, -467, -469, -472, -474, -475, 476, -477, 478, -479, -483, -492, (and all variations)

Table 329: 2 Channel Analog Input Modules

Input Process Image					
Offset	Byte De	Description			
	High Byte	Low Byte	Description		
0	D1	D0	Measured Value Channel 1		
1	D3	D2	Measured Value Channel 2		

13.2.3.3 4 Channel Analog Input Modules

750-453, -455, -457, -459, -460, -468, (and all variations), 753-453, -455, -457, -459

Table 330: 4 Channel Analog Input Modules

Input Process Image					
Offset	Byte De	Description			
	High Byte	Low Byte	Description		
0	D1	D0	Measured Value Channel 1		
1	D3	D2	Measured Value Channel 2		
2	D5	D4	Measured Value Channel 3		
3	D7	D6	Measured Value Channel 4		

13.2.4 Analog Output Modules

The hardware of an analog output module has 16 bits of measured analog data per channel and 8 bits of control/status. However, the coupler/controller with MODBUS/TCP does not have access to the 8 control/status bits. Therefore, the coupler/controller with MODBUS/TCP can only access the 16 bits of analog data per channel, which are grouped as words and mapped in Intel format in the Output Process Image.

When digital output modules are also present in the node, the analog output data is always mapped into the Output Process Image in front of the digital data.

Information

Information to the structure of the Control/Status byte

For detailed information about the structure of a particular module's control/status byte, please refer to that module's manual. Manuals for each module can be found on the Internet under: <u>http://www.wago.com</u>.

13.2.4.1 2 Channel Analog Output Modules

750-550, -552, -554, -556, -560, -562, 563, -585, (and all variations), 753-550, -552, -554, -556

Table 331: 2 Channel Analog Output Modules

Output Process Image					
Offset	Byte De	Description			
	High Byte	Low Byte	Description		
0	D1	D0	Output Value Channel 1		
1	D3	D2	Output Value Channel 2		

13.2.4.2 4 Channel Analog Output Modules

750-553, -555, -557, -559, 753-553, -555, -557, -559

 Table 332: 4 Channel Analog Output Modules

Output Process Image					
Offset	Byte De	Description			
	High Byte	Low Byte	Description		
0	D1	D0	Output Value Channel 1		
1	D3	D2	Output Value Channel 2		
2	D5	D4	Output Value Channel 3		
3	D7	D6	Output Value Channel 4		

13.2.5 Specialty Modules

WAGO has a host of Specialty I/O modules that perform various functions. With individual modules beside the data bytes also the control/status byte is mapped in the process image.

The control/status byte is required for the bidirectional data exchange of the module with the higher-ranking control system. The control byte is transmitted from the control system to the module and the status byte from the module to the control system.

This allows, for example, setting of a counter with the control byte or displaying of overshooting or undershooting of the range with the status byte.

The control/status byte always is in the process image in the Low byte.

Information

Information to the structure of the Control/Status byte

For detailed information about the structure of a particular module's control/status byte, please refer to that module's manual. Manuals for each module can be found on the Internet under: <u>http://www.wago.com</u>.

13.2.5.1 Counter Modules

750-404, (and all variations except of /000-005), 753-404, (and variation /000-003)

The above Counter Modules have a total of 5 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 1 byte of control/status). The counter value is supplied as 32 bits. The following tables illustrate the Input and Output Process Image, which has a total of 3 words mapped into each image. Word alignment is applied.

Table 333: Counter Modules 750-404, (and all variations except of /000-005), 753-404, (and variation /000-003)

Input Process Image					
Offset	Byte Des	Description			
	High Byte	Low Byte	Description		
0	-	S	Status byte		
1	D1	D0	Counter value		
2	D3	D2	Counter value		

Output Process Image					
Offset	Byte De	stination	Description		
	High Byte	Low Byte	Description		
0	-	С	Control byte		
1	D1	D0	Counter setting value		
2	D3	D2	Counter setting value		

750-404/000-005

The above Counter Modules have a total of 5 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 1 byte of control/ status). The two counter values are supplied as 16 bits. The following tables illustrate the Input and Output Process Image, which has a total of 3 words mapped into each image. Word alignment is applied.

Table 334: Counter Modules 750-404/000-005

Input Process Image					
Offset	Byte Dest	Description			
	High Byte	Low Byte	Description		
0	-	S	Status byte		
1	D1	D0	Counter Value of Counter 1		
2	D3	D2	Counter Value of Counter 2		

Output Process Image					
Offset	Byte Dest	Description			
	High Byte	Low Byte	Description		
0	-	С	Control byte		
1	D1	D0	Counter Setting Value of Counter 1		
2	D3	D2	Counter Setting Value of Counter 2		

750-638, 753-638

The above Counter Modules have a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 2 bytes of control/status). The two counter values are supplied as 16 bits. The following tables illustrate the Input and Output Process Image, which has a total of 4 words mapped into each image. Word alignment is applied.

Table 335: Counter Modules 750-638, 753-638

Input Process Image					
Offset	Byte Destination		Description		
	High Byte	Low Byte	Description		
0	-	SO	Status byte von Counter 1		
1	D1	D0	Counter Value von Counter 1		
2	-	S1	Status byte von Counter 2		
3	D3	D2	Counter Value von Counter 2		

Output Process Image					
Offset	Byte Destination		Description		
	High Byte	Low Byte	Description		
0	-	C0	Control byte von Counter 1		
1	D1	D0	Counter Setting Value von Counter 1		
2	-	C1	Control byte von Counter 2		
3	D3	D2	Counter Setting Value von Counter 2		

13.2.5.2 Pulse Width Modules

750-511, (and all variations /xxx-xxx)

The above Pulse Width modules have a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of channel data and 2 bytes of control/status). The two channel values are supplied as 16 bits. Each channel has its own control/status byte. The following table illustrates the Input and Output Process Image, which has a total of 4 words mapped into each image. Word alignment is applied.

Table 336: Pulse Width Modules 750-511, /xxx-xxx

Input and Output Process					
Offect	Byte Destination		Description		
Oliset	High Byte	Low Byte	Description		
0	-	C0/S0	Control/Status byte of Channel 1		
1	D1	D0	Data Value of Channel 1		
2	-	C1/S1	Control/Status byte of Channel 2		
3	D3	D2	Data Value of Channel 2		

13.2.5.3 Serial Interface Modules with alternative Data Format

750-650, (and the variations /000-002, -004, -006, -009, -010, -011, -012, -013), 750-651, (and the variations /000-001, -002, -003), 750-653, (and the variations /000-002, -007), 753-650, -653

Note

The process image of the / 003-000-variants depends on the parameterized operating mode!

With the freely parametrizable variations /003 000 of the serial interface modules, the desired operation mode can be set. Dependent on it, the process image of these modules is then the same, as from the appropriate variation.

The above Serial Interface Modules with alternative data format have a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of serial data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have a total of 2 words mapped into each image. Word alignment is applied.

Table 337: Serial Interface Modules with alternative Data Format

Input and Output Process Image					
Offect	Byte Des	stination	Description		
Oliset	High Byte Low Byte	Desci	ription		
0	D0	C/S	Data byte Control/statu byte		
1	D2	D1	Data	bytes	

13.2.5.4 Serial Interface Modules with Standard Data Format

750-650/000-001, -014, -015, -016 750-653/000-001, -006

The above Serial Interface Modules with Standard Data Format have a total of 6 bytes of user data in both the Input and Output Process Image (5 bytes of serial data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have a total of 3 words mapped into each image. Word alignment is applied.

Table 338: Serial Interface Modules with Standard Data Format

Input and Output Process Image						
Offset	Byte Destination		Desci	Description		
Uliset	High Byte	Low Byte	Desci	iption		
0	D0	C/S	Data byte	Control/status byte		
1	D2	D1	Data	bytes		
2	D4	D3	Data	Uyles		

13.2.5.5 Data Exchange Module

750-654, (and the variation /000-001)

The Data Exchange modules have a total of 4 bytes of user data in both the Input and Output Process Image. The following tables illustrate the Input and Output Process Image, which has a total of 2 words mapped into each image. Word alignment is applied.

Input and Output Process Image					
Offset	Byte Des	stination	Description		
	High Byte	Low Byte	Description		
0	D1	D0	Data butas		
1	D3	D2	Data bytes		

13.2.5.6 SSI Transmitter Interface Modules

750-630 (and all variations)

Note

The process image of the / 003-000-variants depends on the parameterized operating mode!

The operating mode of the configurable /003-000 I/O module versions can be set. Based on the operating mode, the process image of these I/O modules is then the same as that of the respective version.

The above SSI Transmitter Interface modules have a total of 4 bytes of user data in the Input Process Image, which has 2 words mapped into the image. Word alignment is applied.

Table 340: SSI Transmitter Interface Mode	ıles
---	------

Input Process Image						
Offset	Byte Des	stination	Description			
	High Byte	Low Byte	Description			
0	D1	D0	Data bytes			
1	D3	D2				

13.2.5.7 Incremental Encoder Interface Modules

750-631/000-004, -010, -011

The above Incremental Encoder Interface modules have 5 bytes of input data and 3 bytes of output data. The following tables illustrate the Input and Output Process Image, which have 4 words into each image. Word alignment is applied.

 Table 341:
 Incremental Encoder Interface Modules 750-631/000-004, --010, -011

Input Process Image						
Offset	Byte De	Byte Destination		Description		
	High Byte	Low Byte	Description			
0	-	S	not used	Status byte		
1	D1	D0	Counter word			
2	-	_	not used			
3	D4	D3	Latch word			

Output Process Image					
Offset	Byte Des	stination	Description		
	High Byte	Low Byte	Description		
0	-	С	not used Control by		
1	D1	D0	Counter setting word		
2	-	-	not used		
3	-	-	not used		

750-634

The above Incremental Encoder Interface module has 5 bytes of input data (6 bytes in cycle duration measurement mode) and 3 bytes of output data. The following tables illustrate the Input and Output Process Image, which has 4 words mapped into each image. Word alignment is applied.

Table 342. Incremental Encoder Interface Wouldes 750-054						
Input Process Image						
Offset	Byte De	stination	Description			
Ullset	High Byte	Low Byte	Description			
0	-	S	not used Status byte			
1	D1	D0	Counter word			
2	-	(D2) *)	not used (Periodic time			
3	D4	D3	Latch	word		

Table 342: Incremental Encoder Interface Modules 750-634

*) If cycle duration measurement mode is enabled in the control byte, the cycle duration is given as a 24-bit value that is stored in D2 together with D3/D4.

Output Process Image					
Offect	Byte Destination		Description		
Uliset	High Byte	Low Byte	Description		
0	_	С	not used Control byte		
1	D1	D0	Counter setting word		
2	-	-	not used		
3	_	-			

750-637

The above Incremental Encoder Interface Module has a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of encoder data and 2 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 4 words mapped into each image. Word alignment is applied.

Input and Output Process Image					
Offect	Byte De	stination	Description		
High Byte Low		Low Byte	Description		
0	-	C0/S0	Control/Status byte of Channel 1		
1	D1	D0	Data Value of Channel 1		
2	-	C1/S1	Control/Status byte of Channel 2		
3	D3	D2	Data Value of Channel 2		

 Table 343: Incremental Encoder Interface Modules 750-637

750-635, 753-635

The above Digital Pulse Interface module has a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of module data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have 2 words mapped into each image. Word alignment is applied.

Table 344: Digital Pulse Interface Modules 750-635

Input and Output Process Image						
Offsot	Byte De	estination	Description Data byte Control/status byte			
Oliset	High Byte	Low Byte				
0	D0	C0/S0				
1	D2	D1	Data	bytes		

13.2.5.8 DC-Drive Controller

750-636

The DC-Drive Controller maps 6 bytes into both the input and output process image. The data sent and received are stored in up to 4 input and output bytes (D0 ... D3). Two control bytes (C0, C1) and two status bytes (S0/S1) are used to control the I/O module and the drive.

In addition to the position data in the input process image (D0 ... D3), it is possible to display extended status information (S2 ... S5). Then the three control bytes (C1 ... C3) and status bytes (S1 ... S3) are used to control the data flow.

Bit 3 of control byte C1 (C1.3) is used to switch between the process data and the extended status bytes in the input process image (Extended Info_ON). Bit 3 of status byte S1 (S1.3) is used to acknowledge the switching process.

Table 345: DC-Drive Controller 750-636

Input Process Image						
Offsot	Byte D	Destination	Description			
Oliset	High Byte	Low Byte	Desci	iption		
0	S1	SO	Status byte S1	Status byte S0		
1	D1*) / S3**)	D0*) / S2**)	Actual position*) / Extended status byte S3**)	Actual position (LSB) / Extended status byte S2**)		
2	D3*) / S5**)	D2*) / S4**)	Actual position (MSB) / Extended status byte S3**)	Actual position*) / Extended status byte S4**)		

*) ExtendedInfo_ON = '0'. **) ExtendedInfo_ON = '1'.

Output Process Image					
Offset	Byte Destination		Description		
Oliset	High Byte	Low Byte	Description		
0	C1	C0	Control byte C1	Control byte C0	
1	D1	D0	Setpoint position	Setpoint position (LSB)	
2	D3	D2	Setpoint position (MSB)	Setpoint position	

13.2.5.9 Stepper Controller

750-670

The Stepper controller RS422 / 24 V / 20 mA 750-670 provides the fieldbus coupler 12 bytes input and output process image via 1 logical channel. The data to be sent and received are stored in up to 7 output bytes (D0 ... D6) and 7 input bytes (D0 ... D6), depending on the operating mode.

Output byte D0 and input byte D0 are reserved and have no function assigned.

One I/O module control and status byte (C0, S0) and 3 application control and status bytes (C1 ... C3, S1 ... S3) provide the control of the data flow.

Switching between the two process images is conducted through bit 5 in the control byte (C0 (C0.5). Activation of the mailbox is acknowledged by bit 5 of the status byte S0 (S0.5).

Input Process Image					
Byte De	stination	Dosor	intion		
High Byte	Low Byte	Desci	iption		
reserved	SO	reserved	Status byte S0		
D1	D0				
D3	D2	Process data*	Process data*) / Mailbox**)		
D5	D4				
S3	D6	Status byte S3	Process data*) / reserved**)		
S1	S2	Status byte S1	Status byte S2		
	rocess Image Byte De High Byte reserved D1 D3 D5 S3 S1	rocess ImageByte DestinationHigh ByteLow BytereservedS0D1D0D3D2D5D4S3D6S1S2	Byte DestinationHigh ByteLow BytereservedS0reservedD1D0Process data*D3D2Process data*D5D4Status byte S3S1S2Status byte S1		

Table 346: Stepper Controller RS 422 / 24 V / 20 mA 750-670

*) Cyclic process image (Mailbox disabled)

**) Mailbox process image (Mailbox activated)

Output Process Image					
Offeet	Byte D	Byte Destination		Description	
Uliset	High Byte	Low Byte	Description		
0	reserved	C0	reserved Control byte C		
1	D1	D0			
2	D3	D2	Process data*) / Mailbox**)	
3	D5	D4	7		
4	C3	D6	Control byte C3	Process data*) / reserved**)	
5	C1	C2	Control byte C1	Control byte C2	

*) Cyclic process image (Mailbox disabled)

**) Mailbox process image (Mailbox activated)

13.2.5.10 RTC Module

750-640

The RTC Module has a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of module data and 1 byte of control/status and 1 byte ID for command). The following table illustrates the Input and Output Process Image, which have 3 words mapped into each image. Word alignment is applied.

Table 347: RTC Module 750-640

Input and Output Process Image						
Offset	Byte Destination		Description			
Oliset	High Byte	High Byte Low Byte		iption		
0	ID	C/S	Command byte	Control/status byte		
1	D1	D0	Dete	- Data bytes		
2	D3	D2	Data			

13.2.5.11 DALI/DSI Master Module

750-641

The DALI/DSI Master module has a total of 6 bytes of user data in both the Input and Output Process Image (5 bytes of module data and 1 byte of control/status). The following tables illustrate the Input and Output Process Image, which have 3 words mapped into each image. Word alignment is applied.

Table 348: DALI/DSI Master module 750-641

Input Process Image						
Offect	Byte Destination		Description			
Oliset	High Byte	Low Byte	Description			
0	D0	S	DALI Response	Status byte		
1	D2	D1	Message 3	DALI Address		
2	D4	D3	Message 1	Message 2		

Output Process Image					
Offset	Byte Destination		Description		
Uliset	High Byte	Low Byte	Descripti	on	
0	D0	С	DALI command, DSI dimming value	Control byte	
1	D2	D1	Parameter 2	DALI Address	
2	D4	D3	Command extension	Parameter 1	

13.2.5.12 EnOcean Radio Receiver

750-642

The EnOcean radio receiver has a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of module data and 1 byte of control/status). The following tables illustrate the Input and Output Process Image, which have 2 words mapped into each image. Word alignment is applied.

Table 349: EnOcean Radio Receiver 750-642

Input Process Image					
Offset	Byte Destination		Description		
Olisee	High Byte	Low Byte	Description		
0	D0	S	Data byte Status byte		
1	D2	D1	Data bytes		

Output Process Image					
Offset Byte Destination Description					
Uliset	High Byte	Low Byte	Description		
0	-	С	not used	Control byte	
1	-	-	not used		

13.2.5.13 MP Bus Master Module

750-643

The MP Bus Master Module has a total of 8 bytes of user data in both the Input and Output Process Image (6 bytes of module data and 2 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 4 words mapped into each image. Word alignment is applied.

Table 350: MP Bus Master Module 750-643

Input and Output Process Image						
Offset	Byte Do	estination	Description			
	High Byte	Low Byte	Description			
0	C1/S1	C0/S0	extended Control/ Status byte	Control/status byte		
1	D1	D0				
2	D3	D2	Data bytes			
3	D5	D4				

13.2.5.14 Bluetooth® RF-Transceiver

750-644

The size of the process image for the *Bluetooth*[®] module can be adjusted to 12, 24 or 48 bytes.

It consists of a control byte (input) or status byte (output); an empty byte; an overlayable mailbox with a size of 6, 12 or 18 bytes (mode 2); and the *Bluetooth*[®] process data with a size of 4 to 46 bytes.

Thus, each *Bluetooth*[®] module uses between 12 and 48 bytes in the process image. The sizes of the input and output process images are always the same.

The first byte contains the control/status byte; the second contains an empty byte.

Process data attach to this directly when the mailbox is hidden. When the mailbox is visible, the first 6, 12 or 18 bytes of process data are overlaid by the mailbox data, depending on their size. Bytes in the area behind the optionally visible mailbox contain basic process data. The internal structure of the *Bluetooth*[®] process data can be found in the documentation for the *Bluetooth*[®] 750-644 RF Transceiver.

The mailbox and the process image sizes are set with the startup tool WAGO-I/O-*CHECK*.

Offect	Byte D	estination	Dece	rintian			
Oliset	High Byte	Low Byte	Desci	iption			
0	-	C0/S0	not used	Control/status byte			
1	D1	D0					
2	D3	D2					
3	D5	D4	Mailbox (0, 3, 6	Mailbox (0, 3, 6 or 9 words) and			
			Process data	(2-23 words)			
max. 23	D45	D44					

Table 351: Bluetooth[®] RF-Transceiver 750-644

13.2.5.15 Vibration Velocity/Bearing Condition Monitoring VIB I/O

750-645

The Vibration Velocity/Bearing Condition Monitoring VIB I/O has a total of 12 bytes of user data in both the Input and Output Process Image (8 bytes of module data and 4 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 8 words mapped into each image. Word alignment is applied.

|--|

Input and Output Process Image							
Offect	Byte D	estination	Dog	amintion			
Uliset	High Byte	Low Byte	Des	scription			
0	-	C0/S0	not used	Control/status byte (log. Channel 1, Sensor input 1)			
1	D1	D0	Da (log. Channel	Data bytes annel 1, Sensor input 1)			
2	-	C1/S1	not used	Control/status byte (log. Channel 2, Sensor input 2)			
3	D3	D2	Da (log. Channel	Data bytes nel 2, Sensor input 2)			
4	-	C2/S2	not used	Control/status byte (log. Channel 3, Sensor input 1)			
5	D5	D4	Da (log. Channel	Data bytes og. Channel 3, Sensor input 3)			
6	-	C3/S3	not used	Control/status byte (log. Channel 4, Sensor input 2)			
7	D7	D6	Da (log. Channel	ta bytes 4, Sensor input 2)			

13.2.5.16 KNX/EIB/TP1 Module

753-646

The KNX/TP1 module appears in router and device mode with a total of 24-byte user data within the input and output area of the process image, 20 data bytes and 2 control/status bytes. Even though the additional bytes S1 or C1 are transferred as data bytes, they are used as extended status and control bytes. The opcode is used for the read/write command of data and the triggering of specific functions of the KNX/EIB/TP1 module. Word-alignment is used to assign 12 words in the process image. Access to the process image is not possible in router mode. Telegrams can only be tunneled.

In device mode, access to the KNX data can only be performed via special function blocks of the IEC application. Configuration using the ETS engineering tool software is required for KNX.

Table 353: KNX/FIB/TP1 Module 753-646

Input Process Image							
Offeet	Byte D	estination	tion				
Uliset	High Byte	Low Byte	Desc	ription			
0	-	S0	not used	Status byte			
1	S1	OP	extended Status byte Opcode				
2	D1	D0	Data byte 1	Data byte 0			
3	D3	D2	Data byte 3	Data byte 2			
4	D5	D4	Data byte 5	Data byte 4			
5	D7	D6	Data byte 7	Data byte 6			
6	D9	D8	Data byte 9	Data byte 8			
7	D11	D10	Data byte 11	Data byte 10			
8	D13	D12	Data byte 13	Data byte 12			
9	D15	D14	Data byte 15	Data byte 14			
10	D17	D16	Data byte 17	Data byte 16			
11	D19	D18	Data byte 19	Data byte 18			

Output Process Image						
Offect	Byte De	estination	Doso	rintion		
Uliset	High Byte	Low Byte	Desc	ription		
0	-	C0	not used	Control byte		
1	C1	OP	extended Control byte	Opcode		
2	D1	D0	Data byte 1	Data byte 0		
3	D3	D2	Data byte 3	Data byte 2		
4	D5	D4	Data byte 5	Data byte 4		
5	D7	D6	Data byte 7	Data byte 6		
6	D9	D8	Data byte 9	Data byte 8		
7	D11	D10	Data byte 11	Data byte 10		
8	D13	D12	Data byte 13	Data byte 12		
9	D15	D14	Data byte 15	Data byte 14		
10	D17	D16	Data byte 17	Data byte 16		
11	D19	D18	Data byte 19	Data byte 18		

13.2.5.17 AS-interface Master Module

750-655

The length of the process image of the AS-interface master module can be set to fixed sizes of 12, 20, 24, 32, 40 or 48 bytes.

It consists of a control or status byte, a mailbox with a size of 0, 6, 10, 12 or 18 bytes and the AS-interface process data, which can range from 0 to 32 bytes.

The AS-interface master module has a total of 6 to maximally 24 words data in both the Input and Output Process Image. Word alignment is applied.

The first Input and output word, which is assigned to an AS-interface master module, contains the status / control byte and one empty byte. Subsequently the mailbox data are mapped, when the mailbox is permanently superimposed (Mode 1).

In the operating mode with suppressible mailbox (Mode 2), the mailbox and the cyclical process data are mapped next.

The following words contain the remaining process dat.

The mailbox and the process image sizes are set with the startup tool WAGO-I/O-*CHECK*.

Input and Output Process Image							
Offset	Byte Do	estination	Description				
	High Byte	Low Byte					
0	-	C0/S0	not used Control/statu byte				
1	D1	D0					
2	D3	D2	Mailbox (0, 3, 5, 6 or 9 words)/				
3	D5	D4					
			Process data	(0-16 words)			
max. 23	D45	D44					

Table 354: AS-interface Master module 750-655

13.2.6 System Modules

13.2.6.1 System Modules with Diagnostics

750-610, -611

The modules provide 2 bits of diagnostics in the Input Process Image for monitoring of the internal power supply.

Table 355: System Modules with Diagnostics 750-610, -611

Input Process Image								
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 H				Bit 1	Bit 0			
						Diagnostic	Diagnostic	
						bit S 2	bit S 1	
						Fuse	Fuse	

13.2.6.2 Binary Space Module

750-622

The Binary Space Modules behave alternatively like 2 channel digital input modules or output modules and seize depending upon the selected settings 1, 2, 3 or 4 bits per channel. According to this, 2, 4, 6 or 8 bits are occupied then either in the process input or the process output image.

Table 356: Binary Space Module 750-622 (with behavior like 2 channel digital input)

Input and Output Process Image								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
(Data bit	(Data bit	(Data bit	(Data bit	(Data bit	(Data bit	Data bit	Data bit	
DI 8)	DI 7)	DI 6)	DI 5)	DI 4)	DI 3)	DI 2	DI 1	

13.3 Process Data Architecture for EtherNet/IP

With some I/O modules, the structure of the process data is fieldbus specific.

In the case of a fieldbus controller with EtherNet/IP, the process image uses a word structure (with word alignment). The internal mapping method for data greater than one byte conforms to the Intel format.

The following section describes the process image for various WAGO-I/O-SYSTEM 750 and 753 I/O modules when using a fieldbus controller with EtherNet/IP.

For the PFC process image of the programmable fieldbus controller is the structure of the process data mapping identical.

NOTICE

Equipment damage due to incorrect address!

Depending on the specific position of an I/O module in the fieldbus node, the process data of all previous byte or bit-oriented modules must be taken into account to determine its location in the process data map.

13.3.1 Digital Input Modules

Digital input modules supply one bit of data per channel to specify the signal state for the corresponding channel. These bits are mapped into the Input Process Image.

Some digital I/O modules have an additional diagnostic bit per channel in the input process image. The diagnostic bit detects faults (e.g., wire breakage, overloads and/or short circuits). For some I/O modules, the data bits also have be evaluated with the set diagnostic bit.

When analog input modules are also present in the node, the digital data is always appended after the analog data in the Input Process Image, grouped into bytes.

1 sub index is assigned for each 8 bit.

Each input channel seizes one Instance in the Discrete Input Point Object (Class 0x65).

13.3.1.1 1 Channel Digital Input Module with Diagnostics

750-435

Table 357: 1 Channel Digital Input Module with Diagnostics

Input Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
						Diagnostic bit S 1	Data bit DI 1				

The input modules seize 2 Instances in Class (0x65).

13.3.1.2 2 Channel Digital Input Modules

750-400, -401, -405, -406, -410, -411, -412, -427, -438, (and all variations), 753-400, -401, -405, -406, -410, -411, -412, -427

 Table 358: 2 Channel Digital Input Modules

input r rocess image

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
						Data bit DI 2	Data bit DI 1					
						Channel 2	Channel 1					

The input modules seize 2 Instances in Class (0x65).

13.3.1.3 2 Channel Digital Input Module with Diagnostics

750-419, -421, -424, -425, 753-421, -424, -425

Table 359: 2 Channel Digital Input Module with Diagnostics

6

in part i or												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				Diagnostic bit S 2	Diagnostic bit S 1	Data bit DI 2	Data bit DI 1					
				Channel 2	Channel 1	Channel 2	Channel 1					

The input modules seize 4 Instances in Class (0x65).

13.3.1.4 2 Channel Digital Input Module with Diagnostics and Output Process Data

750-418, 753-418

The digital input module supplies a diagnostic and acknowledge bit for each input channel. If a fault condition occurs, the diagnostic bit is set. After the fault condition is cleared, an acknowledge bit must be set to re-activate the input. The diagnostic data and input data bit is mapped in the Input Process Image, while the acknowledge bit is in the Output Process Image.

Table 360: 2 Channel Digital Input Module with Diagnostics and Output Process Data

Input Proc	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Diagnostic	Diagnostic	Data bit	Data bit
				bit S 2	bit S 1	DI 2	DI 1
				Channel 2	Channel 1	Channel 2	Channel 1

The input modules seize 4 Instances in Class (0x65).

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				Acknowledge- ment bit Q 2 Channel 2	Acknowledge- ment bit Q 1 Channel 1	0	0					

And the input modules seize 4 Instances in Class (0x66).

13.3.1.5 4 Channel Digital Input Modules

750-402, -403, -408, -409, -414, -415, -422, -423, -428, -432, -433, -1420, -1421, -1422

753-402, -403, -408, -409, -415, -422, -423, -428, -432, -433, -440

 Table 361: 4 Channel Digital Input Modules

Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				Data bit	Data bit	Data bit	Data bit					
				DI 4	DI 3	DI 2	DI 1					
				Channel 4	Channel 3	Channel 2	Channel 1					

The input modules seize 4 Instances in Class (0x65).

13.3.1.6 8 Channel Digital Input Modules

750-430, -431, -436, -437, -1415, -1416, -1417 753-430, -431, -434

 Table 362: 8 Channel Digital Input Modules

Input Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit				
DI 8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1				
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1				
TT1 ·	1 1	· <u>0</u> · ·	· 01	(0, (5))							

The input modules seize 8 Instances in Class (0x65).

13.3.1.7 16 Channel Digital Input Modules

750-1400, -1402, -1405, -1406, -1407

Table 363: 16 Channel Digital Input Modules

Input	Input Process Image														
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
bit	bit	bit	bit	bit	bit	bit	bit	bit DI	bit						
DI 16	DI 15	DI 14	DI 13	DI 12	DI 11	DI 10	DI 9	8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1
Chann	Chan	Chan	Chan	Chan	Chan	Chann	Chan	Chan	Chan	Chan	Chan	Chan	Chan	Chan	Chan
el 16	nel 15	nel 14	nel 13	nel 12	nel 11	el 10	nel 9	nel 8	nel 7	nel 6	nel 5	nel 4	nel 3	nel 2	nel 1

13.3.2 Digital Output Modules

Digital output modules use one bit of data per channel to control the output of the corresponding channel. These bits are mapped into the Output Process Image.

Some digital modules have an additional diagnostic bit per channel in the Input Process Image. The diagnostic bit is used for detecting faults that occur (e.g., wire breaks and/or short circuits). With some I/O modules, with set diagnostic bit, additionally the data bits must be evaluated.

When analog output modules are also present in the node, the digital image data is always appended after the analog data in the Output Process Image, grouped into bytes.

For each 8 bits a subindex is occupied.

Each output channel occupies one instance in the Discrete Output Point Object (Class 0x 66).

13.3.2.1 1 Channel Digital Output Module with Input Process Data

750-523

The digital output modules deliver 1 bit via a process value Bit in the output process image, which is illustrated in the input process image. This status image shows "manual mode".

Table 364: 1 Channel Digital Output Module with Input Process Data

Input Proc	ess Image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						not used	Status bit "Manual Operation"

Output Process Image

Output Fro	cess image						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						not used	controls DO 1 Channel 1

And the output modules seize 2 Instances in Class (0x66).

13.3.2.2 2 Channel Digital Output Modules

750-501, -502, -509, -512, -513, -514, -517, -535, (and all variations), 753-501, -502, -509, -512, -513, -514, -517

Table 365: 2 Channel Digital Output Modules

Output Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
						controls	controls				
						DO 2	DO 1				
						Channel 2	Channel 1				

The output modules seize 2 Instances in Class (0x66).

13.3.2.3 2 Channel Digital Input Modules with Diagnostics and Input Process Data

750-507 (-508), -522, 753-507

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 366: 2 Channel Digital Input Modules with Diagnostics and Input Process Data

Input Proc	Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
						Diagnostic bit S 2 Channel 2	Diagnostic bit S 1 Channel 1						

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
						controls	controls					
						DO 2	DO 1					
						Channel 2	Channel 1					

And the output modules seize 2 Instances in Class (0x66).

750-506, 753-506

The digital output module has 2-bits of diagnostic information for each output channel. The 2-bit diagnostic information can then be decoded to determine the exact fault condition of the module (i.e., overload, a short circuit, or a broken wire). The 4-bits of diagnostic data are mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 367: 2 Channel Digital Input Modules with Diagnostics and Input Process Data 75x-506

Input Proc	Input Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				Diagnostic bit S 3 Channel 2	Diagnostic bit S 2 Channel 2	Diagnostic bit S 1 Channel 1	Diagnostic bit S 0 Channel 1					
Diagnostic hits $S1/S0$, $S3/S2$ = '00' standard mode												

Diagnostic bits S1/S0, S3/S2: = '01' The output model

no connected load/short circuit against +24 V

Short circuit to ground/overload

The output modules seize 4 Instances in Class (0x65).

Output Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
				not used	not used	controls DO 2 Channel 2	controls DO 1 Channel 1				

And the output modules seize 4 Instances in Class (0x66).

13.3.2.4 **4 Channel Digital Output Modules**

750-504, -516, -519, -531, 753-504, -516, -531, -540

Table 368: 4 Channel Digital Output Modules

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				controls	controls	controls	controls					
				DO 4	DO 3	DO 2	DO 1					
				Channel 4	Channel 3	Channel 2	Channel 1					

The output modules seize 4 Instances in Class (0x66).

13.3.2.5 4 Channel Digital Output Modules with Diagnostics and Input **Process Data**

750-532

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 369: 4 Channel Digital Output Modules with Diagnostics and Input Process Data

Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				Diagnostic bit S 4	Diagnostic bit S 3	Diagnostic bit S 2	Diagnostic bit S 1					
				Channel 4	Channel 3	Channel 2	Channel 1					

Diagnostic bit S = 0no Error

Diagnostic bit S = '1'overload, short circuit, or broken wire The output modules seize 4 Instances in Class (0x65).

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
				controls	controls	controls	controls					
				DO 4	DO 3	DO 2	DO 1					
				Channel 4	Channel 3	Channel 2	Channel 1					

And the output modules seize 4 Instances in Class (0x66).

13.3.2.6 8 Channel Digital Output Module

750-530, -536, -1515, -1516 753-530, -534

Table 370: 8 Channel Digital Output Module

Output Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
controls	controls	controls	controls	controls	controls	controls	controls					
DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1					
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1					

The output modules seize 8 Instances in Class (0x66).

13.3.2.7 8 Channel Digital Output Modules with Diagnostics and Input **Process Data**

750-537

The digital output modules have a diagnostic bit for each output channel. When an output fault condition occurs (i.e., overload, short circuit, or broken wire), a diagnostic bit is set. The diagnostic data is mapped into the Input Process Image, while the output control bits are in the Output Process Image.

Table 371: 8 Channel Digital Output Modules with Diagnostics and Input Process Data

Input Process Image												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic	Diagnostic					
bit	bit	bit	bit	bit	bit	bit	bit					
S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1					
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1					

Diagnostic bit S = 0

no Error overload, short circuit, or broken wire Diagnostic bit S = '1'

The output modules seize 8 Instances in Class (0x65).

Output Process Image											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
controls	controls	controls	controls	controls	controls	controls	controls				
DO 8	DO 7	DO 6	DO 5	DO 4	DO 3	DO 2	DO 1				
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1				

And the output modules seize 8 Instances in Class (0x66).

13.3.2.8 16 Channel Digital Output Modules

750-1500, -1501, -1504, -1505

Table 372: 16 Channel Digital Output Modules

Output Process Image

Outp	utitu	16635 1	mage												
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
controls DO 16	controls DO 15	controls DO 14	controls DO 13	controls DO 12	controls DO 11	controls DO 10	controls DO 9	controls DO 8	controls DO 7	controls DO 6	controls DO 5	controls DO 4	controls DO 3	controls DO 2	controls DO 1
Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel	Channel						
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

The output modules seize 16 Instances in Class (0x66).

13.3.2.9 8 Channel Digital Input/Output Modules

750-1502, -1506

Table 373: 8 Channel Digital Input/Output Modules

Input Process Image							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit	Data bit
DI 8	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1
The input/	The input/output modules soize & Instances in Class (0x65)						

The input/output modules seize 8 Instances in Class (0x65).

Output Process Image							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
controls DO 8	controls DO 7	controls DO 6	controls DO 5	controls DO 4	controls DO 3	controls DO 2	controls DO 1
Channel 8	Channel 7	Channel 6	Channel 5	Channel 4	Channel 3	Channel 2	Channel 1
			0 X .		(0 (0)		

The input/output modules seize 8 Instances in Class (0x66).

13.3.3 Analog Input Modules

The hardware of an analog input module has 16 bits of measured analog data per channel and 8 bits of control/status.

However, the coupler/controller with EtherNet/IP does not have access to the 8 control/status bits.

Therefore, the coupler/controller with MODBUS/TCP can only access the 16 bits of analog data per channel, which are grouped as words and mapped in Intel format in the Input Process Image.

When digital input modules are also present in the node, the analog input data is always mapped into the Input Process Image in front of the digital data.

Each input channel seizes one Instance in the Analog Input Point Object (Class 0x67).

Note

Information for the control/status byte development

Please refer to the corresponding description of the I/O modules for the structure of the control/status bytes. You can find a manual with the relevant I/O module description on the WAGO home page: at: <u>http://www.wago.com</u>.

13.3.3.1 1 Channel Analog Input Modules

750-491, (and all variations)

Table 374: 1 Channel Analog Input Modules

Input Process Image				
Instance	Byte D	estination	Description	
Instance	High Byte	Low Byte	Description	
n	D1	D0	Measured Value U_D	
n+1	D3	D2	Measured Value U _{ref}	

The input modules represent 2x2 bytes and seize 2 Instances in Class (0x67).

13.3.3.2 2 Channel Analog Input Modules

750-452, -454, -456, -461, -462, -465, -466, -467, -469, -472, -474, -475, 476, -477, -478, -479, -480, -481, -483, -485, -492, (and all variations), 753-452, -454, -456, -461, -465, -466, -467, -469, -472, -474, -475, 476, -477, 478, -479, -483, -492, (and all variations)

Table 375: 2 Channel Analog Input Modules

Input Process Image				
Instance	Byte I	Destination	Description	
Instance	High Byte	Low Byte	Description	
n	D1	D0	Measured Value Channel 1	
n+1	D3	D2	Measured Value Channel 2	

The input modules represent 2x2 bytes and seize 2 Instances in Class (0x67).

13.3.3.3 4 Channel Analog Input Modules

750-453, -455, -457, -459, -460, -468, (and all variations), 753-453, -455, -457, -459

Table 376: 4 Channel Analog Input Modules

Input Process Image					
Instance	Byte I	Destination	Description		
	High Byte	Low Byte	Description		
n	D1	D0	Measured Value Channel 1		
n+1	D3	D2	Measured Value Channel 2		
n+2	D5	D4	Measured Value Channel 3		
n+3	D7	D6	Measured Value Channel 4		

The input modules represent 4x2 bytes and seize 4 Instances in Class (0x67).

13.3.4 Analog Output Modules

The hardware of an analog output module has 16 bits of measured analog data per channel and 8 bits of control/status. However, the coupler/controller with EtherNet/IP does not have access to the 8 control/status bits. Therefore, the coupler/controller with EtherNet/IP can only access the 16 bits of analog data per channel, which are grouped as words and mapped in Intel format in the Output Process Image.

When digital output modules are also present in the node, the analog output data is always mapped into the Output Process Image in front of the digital data.

Each output channel seizes one Instance in the Analog Output Point Object (Class 0x68).

Information

Information to the structure of the Control/Status byte

For detailed information about the structure of a particular module's control/status byte, please refer to that module's manual. Manuals for each module can be found on the Internet under: <u>http://www.wago.com</u>.

13.3.4.1 2 Channel Analog Output Modules

750-550, -552, -554, -556, -560, -562, 563, -585, (and all variations), 753-550, -552, -554, -556

 Table 377: 2 Channel Analog Output Modules

Output Pr	ocess Image			
Instance	Byte D	estination	Description	
	High Byte	Low Byte	Description	
n	D1	D0	Output Value Channel 1	
n+1	D3	D2	Output Value Channel 2	
$\Gamma_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$				

The output modules represent 2x2 bytes and seize 2 Instances in Class (0x68).

13.3.4.2 4 Channel Analog Output Modules

750-553, -555, -557, -559, 753-553, -555, -557, -559

 Table 378: 4 Channel Analog Output Modules

Output Process Image					
Instance	Byte D	estination	Description		
	High Byte	Low Byte	Description		
n	D1	D0	Output Value Channel 1		
n+1	D3	D2	Output Value Channel 2		
n+2	D5	D4	Output Value Channel 3		
n+3	D7	D6	Output Value Channel 4		

The output modules represent 4x2 bytes and seize 4 Instances in Class (0x68).

13.3.5 Specialty Modules

WAGO has a host of Specialty I/O modules that perform various functions. With individual modules beside the data bytes also the control/status byte is mapped in the process image. The control/status byte is required for the bidirectional data exchange of the module with the higher-ranking control system. The control byte is transmitted from the control system to the module and the status byte from the module to the control system.

This allows, for example, setting of a counter with the control byte or displaying of overshooting or undershooting of the range with the status byte.

The control/status byte always lies in the low byte for the fieldbus coupler/controller with Ethernet/IP.

Information

Information to the structure of the Control/Status byte

For detailed information about the structure of a particular module's control/status byte, please refer to that module's manual. Manuals for each module can be found on the Internet under: <u>http://www.wago.com</u>.

The Specialty Modules represent as analog modules.

For this, the process input data of the Specialty Modules seize one Instance per channel in the Analog Input Point Object (Class 0x67) and the process output data seize one Instance seize one Instance in the Analog Input Point Object (Class 0x67) per channel in the Analog Output Point Object (Class 0x68).

13.3.5.1 Counter Modules

750-404, (and all variations except of /000-005), 753-404, (and variation /000-003)

The above Counter Modules have a total of 5 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 1 byte of control/status). The counter value is supplied as 32 bits. The following tables illustrate the Input and Output Process Image, which has a total of 3 words mapped into each image. Word alignment is applied.

Table 379: Counter Modules 750-404, (and all variations except of /000-005),753-404, (and variation /000-003)

Input Process Image					
Instance	Byte D	estination	Description		
	High Byte	Low Byte	Description		
	-	S	Status byte		
n	D1	D0	Counter value		
	D3	D2	Counter value		

The specialty modules represent 1x6 bytes input data and seize 1 Instance in Class (0x67).

Output Process Image				
Instance	Byte D	estination	Description	
Instance	High Byte	Low Byte	Description	
	-	С	Control byte	
n	D1	D0	Counter setting value	
	D3	D2	Counter setting value	

And the specialty modules represent 1x6 bytes output data and seize 1 Instance in Class (0x68).

750-404/000-005

The above Counter Modules have a total of 5 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 1 byte of control/ status). The two counter values are supplied as 16 bits. The following tables illustrate the Input and Output Process Image, which has a total of 3 words mapped into each image. Word alignment is applied.

Table 380: Counter Modules 750-404/000-005

Input Process Image				
Instance	Byte De	e Destination		
Instance	High Byte	Low Byte	Description	
	-	S	Status byte	
n	D1	D0	Counter Value of Counter 1	
-	D3	D2	Counter Value of Counter 2	

The specialty modules represent 2x3 bytes input data and seize 2 Instances in Class (0x67).

Output Pr	rocess Image			
Instance	Byte De	stination	Description	
Instance	High Byte	Low Byte	Description	
	-	С	Control byte	
n	D1	D0	Counter Setting Value of Counter 1	
ľ	D3	D2	Counter Setting Value of Counter 2	

And the specialty modules represent 1x6 bytes output data and seize 1 Instance in Class (0x68).

750-638, 753-638

The above Counter Modules have a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of counter data and 2 bytes of control/status). The two counter values are supplied as 16 bits. The following tables illustrate the Input and Output Process Image, which has a total of 4 words mapped into each image. Word alignment is applied.

Table 381: Counter Modules /50-638, /53-638					
Input Pro	Input Process Image				
Instance	Byte Do	estination	Description		
Instance	High Byte	Low Byte	Description		
n	-	SO	Status byte von Counter 1		
11	D1	D0	Counter Value von Counter 1		
n+1	-	S1	Status byte von Counter 2		
	D3	D2	Counter Value von Counter 2		

Table 381: Counter Modules 750-638, 753-638

The specialty modules represent 2x3 bytes input data and seize 2 Instances in Class (0x67).

Output Process Image				
Instance	Byte Destination		Description	
Instance	High Byte	Low Byte	Description	
n	-	C0	Control byte von Counter 1	
11	D1 D0 Counter Setting Value vo	Counter Setting Value von Counter 1		
n⊥1	-	C1	Control byte von Counter 2	
11+1	D3	D2	Counter Setting Value von Counter 2	

And the specialty modules represent 2x3 bytes output data and seize 2 Instances in Class (0x68).

13.3.5.2 Pulse Width Modules

750-511, (and all variations /xxx-xxx)

The above Pulse Width modules have a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of channel data and 2 bytes of control/status). The two channel values are supplied as 16 bits. Each channel has its own control/status byte. The following table illustrates the Input and Output Process Image, which has a total of 4 words mapped into each image. Word alignment is applied.

Table 382: Pulse Width Modules 750-511, /xxx-xxx

Input and Output Process				
Instance	Byte Destination		Description	
Instance	High Byte	Low Byte	Description	
n	-	C0/S0	Control/Status byte of Channel 1	
n	D1	D0	Data Value of Channel 1	
n⊥1			Control/Status byte of Channel 2	
n+1	D3	D2	Data Value of Channel 2	

The specialty modules represent 2x3 bytes input and output data and seize 2 Instances in Class (0x67) and 2 Instances in Class (0x68).

13.3.5.3 Serial Interface Modules with alternative Data Format

750-650, (and the variations /000-002, -004, -006, -009, -010, -011, -012, -013), 750-651, (and the variations /000-002, -003), 750-653, (and the variations /000-002, -007), 753-650, -653

Note

The process image of the / 003-000-variants depends on the parameterized operating mode!

With the freely parametrizable variations /003 000 of the serial interface modules, the desired operation mode can be set. Dependent on it, the process image of these modules is then the same, as from the appropriate variation.

The above Serial Interface Modules with alternative data format have a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of serial data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have a total of 2 words mapped into each image. Word alignment is applied.

Input and Output Process Image					
Instance	Byte D	estination	Description		
	High Byte	Low Byte	Description		
n	D0	C/S	Data byte Control/status byte		
n+1	D2	D1	Data	bytes	

The specialty modules represent 2x2 bytes input and output data and seize 2 Instances in Class (0x67) and 2 Instances in Class (0x68).

13.3.5.4 Serial Interface Modules with Standard Data Format

750-650/000-001, -014, -015, -016 750-651/000-001 750-653/000-001, -006

The above Serial Interface Modules with Standard Data Format have a total of 6 bytes of user data in both the Input and Output Process Image (5 bytes of serial data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have a total of 3 words mapped into each image. Word alignment is applied.

Input and Output Process Image					
Tratanaa	Byte D	estination	Description		
Instance	High Byte	Low Byte	Description		
n	D0	C/S	Data byte	Control/status byte	
	D2	D1	Data bytes		
	D4	D3			

Table 384: Serial Interface Modules with Standard Data Format

The specialty modules represent 1x6 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.5.5 Data Exchange Module

750-654, (and the variation /000-001)

The Data Exchange modules have a total of 4 bytes of user data in both the Input and Output Process Image. The following tables illustrate the Input and Output Process Image, which has a total of 2 words mapped into each image. Word alignment is applied.

Table 385: Data	a Exchange Module
-----------------	-------------------

Input and Output Process Image					
Instance	Byte D	estination	Description		
	High Byte	Low Byte	Description		
n	D1	D0	Data bytes		
n+1	D3	D2	Data bytes		

The specialty modules represent 2x2 bytes input and output data and seize 2 Instances in Class (0x67) and 2 Instances in Class (0x68).

13.3.5.6 SSI Transmitter Interface Modules

750-630, (and all variations)

Note

The process image of the / 003-000-variants depends on the parameterized operating mode!

The operating mode of the configurable /003-000 I/O module versions can be set. Based on the operating mode, the process image of these I/O modules is then the same as that of the respective version.

The above SSI Transmitter Interface modules have a total of 4 bytes of user data in the Input Process Image, which has 2 words mapped into the image. Word alignment is applied.

Input Process Image					
Instance	Byte D	estination	Description		
instance	High Byte	Low Byte	Description		
n	D1	D0	Data bytes		
n+1	D3	D2			

Table 386: SSI Transmitter Interface Modules

The specialty modules represent 2x2 bytes input data and seize 2 Instances in Class (0x67).

750-630/000-004, -005, -007

In the input process image, SSI transmitter interface modules with status occupy 5 usable bytes, 4 data bytes, and 1 additional status byte. A total of 3 words are assigned in the process image via word alignment.

Table 387: SSI Transmitter Interface I/O Modules with an Alternative Data Format

Input Process Image					
Instance	Byte D	estination	Description		
	High Byte	High Byte	Description		
n	-	S	not used	Status byte	
	D1	D0	Data bytes		
	D3	D2			

The specialty modules represent 1x6 bytes and seize 1 Instance in Class (0x67).

13.3.5.7 Incremental Encoder Interface Modules

750-631/000-004, -010, -011

The above Incremental Encoder Interface modules have 5 bytes of input data and 3 bytes of output data. The following tables illustrate the Input and Output Process Image, which have 4 words into each image. Word alignment is applied.

Table 388: Incremental Encoder Interface Modules 750-631/000-004, -010, -011

Input Process Image					
Tratanaa	Byte D	Destination		intion	
Instance	High Byte	Low Byte	Desci	iption	
n	-	S	not used	Status byte	
	D1	D0	Counter word		
	-	-	not used		
	D4	D3	Latch word		

The specialty modules represent 1x6 bytes input data and seize 1 Instance in Class (0x67).

Output Process Image				
Instance	Byte Destination		Description	
Instance	High Byte	h Byte Low Byte Descr		
	-	С	Control byte of counter 1	
n	D1	D0	Counter setting value of counter 1	
11	-	-	not used	
	_	-	not used	

And the specialty modules represent 1x6 bytes output data and seize 1 Instance in Class (0x68).

750-634

The above Incremental Encoder Interface module has 5 bytes of input data (6 bytes in cycle duration measurement mode) and 3 bytes of output data. The following tables illustrate the Input and Output Process Image, which has 4 words mapped into each image. Word alignment is applied.

Input Proc	ess Image			
Instance	Byte D	Destination	Dece	wintion
Instance	High Byte	Low Byte	Description	ription
	-	S	not used	Status byte
n	D1	D0	Count	er word
11	-	(D2) *)	not used	(Periodic tim
	D4	D3	Latel	n word

Table 389: Incremental Encoder Interface Modules 750-634

*) If cycle duration measurement mode is enabled in the control byte, the cycle duration is given as a 24-bit value that is stored in D2 together with D3/D4.

The specialty modules represent 1x6 bytes input data and seize 1 Instance in Class (0x67).

Output Process Image					
Instance	Byte D	estination	Description		
Instance	High Byte	Low Byte			
n	-	С	not used	Control byte	
	D1	D0	Counter setting word		
	-	-	not used		
	-	-	not used		

And the specialty modules represent 1x6 bytes output data and seize 1 Instance in Class (0x68).

750-637

The above Incremental Encoder Interface Module has a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of encoder data and 2 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 4 words mapped into each image. Word alignment is applied.

Input and	Output Process Image				
Instance	Byte D	Destination	Description		
Instance	High Byte	Low Byte	Description		
n	-	C0/S0	Control/Status byte of Channel 1		
11	D1	D0	Data Value of Channel 1		
n+1	-	C1/S1	Control/Status byte of Channel 2		
	D3	D2	Data Value of Channel 2		

Table 390: Incremental Encoder Interface Modules 750-637

The specialty modules represent 2x3 bytes input and output data and seize 2 Instances in Class (0x67) and 2 Instances in Class (0x68).

750-635, 753-635

The above Digital Pulse Interface module has a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of module data and 1 byte of control/status). The following table illustrates the Input and Output Process Image, which have 2 words mapped into each image. Word alignment is applied.

Table 391: Incremental Encoder Interface Modules 750-635, 750-635

Input and Output Process Image						
Instance	Byte I	Destination	Description			
	High Byte	Low Byte	Desci	ription		
n	D0	C0/S0	Data byte	Control/status byte		
	D2	D1	Data	bytes		

The specialty modules represent 1x4 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.5.8 DC-Drive Controller

750-636

The DC-Drive Controller maps 6 bytes into both the input and output process image. The data sent and received are stored in up to 4 input and output bytes (D0 ... D3). Two control bytes (C0, C1) and two status bytes (S0/S1) are used to control the I/O module and the drive.

In addition to the position data in the input process image (D0 ... D3), it is possible to display extended status information (S2 ... S5). Then the three control bytes (C1 ... C3) and status bytes (S1 ... S3) are used to control the data flow.

Bit 3 of control byte C1 (C1.3) is used to switch between the process data and the extended status bytes in the input process image (Extended Info_ON). Bit 3 of status byte S1 (S1.3) is used to acknowledge the switching process.

Table 392: DC-Drive Controller 750-636

Input Process Image					
Instance	Byte	Byte Destination		vintion	
Instance	High Byte	Low Byte	Desci	iption	
	S1	SO	Status byte S1	Status byte S0	
n	D1*)/S3**)	D0*) / S2**)	Actual position*) / Extended status byte S3**)	Actual position (LSB) / Extended status byte S2**)	
	D3*)/S5**)	D2*) / S4**)	Actual position (MSB) / Extended status byte S3**)	Actual position*) / Extended status byte S4**)	

*) ExtendedInfo_ON = '0'.

**) ExtendedInfoON = '1'.

Output Process Image					
Instance	Byte	Destination	Description		
Instance	High Byte	Low Byte	Desci	iption	
n	C1	C0	Control byte C1	Control byte C0	
	D1	D0	Setpoint position	Setpoint position (LSB)	
	D3	D2	Setpoint position (MSB)	Setpoint position	

The specialty modules represent 1x6 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.5.9 Steppercontroller

750-670

The Steppercontroller RS422 / 24 V / 20 mA 750-670 provides the fieldbus coupler 12 bytes input and output process image via 1 logical channel. The data to be sent and received are stored in up to 7 output bytes (D0 ... D6) and 7 input bytes (D0 ... D6), depending on the operating mode.

Output byte D0 and input byte D0 are reserved and have no function assigned.

One I/O module control and status byte (C0, S0) and 3 application control and status bytes (C1 ... C3, S1 ... S3) provide the control of the data flow.

Switching between the two process images is conducted through bit 5 in the control byte (C0 (C0.5). Activation of the mailbox is acknowledged by bit 5 of the status byte S0 (S0.5).

Input Process Image					
Instance	Byte I	Destination	Description		
mstance	High Byte	Low Byte	Deser	iption	
	reserved	SO	reserved	Status byte S0	
	D1	D0			
	D3	D2	Process data*	data*) / Mailbox**)	
n	D5	D4			
	S 3	D6	Status byte S3	Process data*) / reserved**)	
	S 1	S2	Status byte S1	Status byte S2	

Table 393: Steppercontroller RS 422 / 24 V / 20 mA 750-670

*) **)

Cyclic process image (Mailbox disabled)

Mailbox process image (Mailbox activated)

Output Process Image					
Instance	Byte I	Destination	Description		
Instance	High Byte	Low Byte	Desci	iption	
	reserved	C0	reserved	Control byte C0	
	D1	D0			
	D3	D2	Process data*	Process data*) / Mailbox**)	
n	D5	D4			
	C3	D6	Control byte C3	Process data*) / reserved**)	
	C1	C2	Control byte C1	Control byte C2	

*) Cyclic process image (Mailbox disabled)
 **) Mailbox process image (Mailbox activated)

The specialty modules represent 1x12 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.5.10 RTC Module

750-640

The RTC Module has a total of 6 bytes of user data in both the Input and Output Process Image (4 bytes of module data and 1 byte of control/status and 1 byte ID for command). The following table illustrates the Input and Output Process Image, which have 3 words mapped into each image. Word alignment is applied.

Table 394: RTC Module 750-640

Input and Output Process Image					
Instance	Byte D	estination	Description		
Instance	High Byte	Low Byte	Description		
n	ID	C/S	Command byte	Control/status byte	
	D1	D0	- Data bytes		
	D3	D2			

The specialty modules represent 1x6 bytes input data and seize 1 Instance in Class (0x67).and seize 1 Instance in Class (0x68).

13.3.5.11 DALI/DSI Master Module

750-641

The DALI/DSI Master module has a total of 6 bytes of user data in both the Input and Output Process Image (5 bytes of module data and 1 byte of control/status). The following tables illustrate the Input and Output Process Image, which have 3 words mapped into each image. Word alignment is applied.

Input Process Image					
Instance	Byte D	estination	Description		
	High Byte	Low Byte	Desci		
n	D0	S	DALI Response	Status byte	
	D2	D1	Message 3	DALI Address	
	D4	D3	Message 1	Message 2	

The specialty modules represent 1x6 bytes input data and seize 1 Instance in Class (0x67).

Output Process Image					
Instance	Byte Do	estination	Description		
Instance	High Byte	Low Byte	Descripti	ion	
n	D0	С	DALI command, DSI dimming value	Control byte	
	D2	D1	Parameter 2	DALI Address	
	D4	D3	Command extension	Parameter 1	

And the specialty modules represent 1x6 bytes output data and seize 1 Instance in Class (0x68).

13.3.5.12 EnOcean Radio Receiver

750-642

The EnOcean radio receiver has a total of 4 bytes of user data in both the Input and Output Process Image (3 bytes of module data and 1 byte of control/status). The following tables illustrate the Input and Output Process Image, which have 2 words mapped into each image. Word alignment is applied.

Table 396: EnOcean Radio Receiver 750-642					
Input Process Image					
Instance	Byte I	Destination	Description		
Instance	High Byte	Low Byte			
n	D0	S	Data byte	Status byte	
n+1	D2	D1	Data bytes		

|--|

Instance	Byte I	Destination	Description		
Instance	High Byte	Low Byte	Desci	iption	
n	-	С	not used	Control byte	
n+1	-	-	not used		

The specialty modules represent 2x2 bytes input and output data and seize 2 Instances in Class (0x67) and 2 Instances in Class (0x68).

13.3.5.13 MP Bus Master Module

750-643

The MP Bus Master Module has a total of 8 bytes of user data in both the Input and Output Process Image (6 bytes of module data and 2 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 4 words mapped into each image. Word alignment is applied.

Table 397: MP B	Bus Master	Module 7	750-643
-----------------	------------	----------	---------

Input and Output Process Image							
Instance	Byte	Destination	Description				
Instance	High Byte	Low Byte					
	C1/S1	C0/S0	extended Control/ Status byte	Control/status byte			
n	D1	D0					
	D3	D2	Data	bytes			
	D5	D4					

The specialty modules represent 1x8 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.5.14 Bluetooth® RF-Transceiver

750-644

The size of the process image for the *Bluetooth*[®] module can be adjusted to 12, 24 or 48 bytes.

It consists of a control byte (input) or status byte (output); an empty byte; an overlayable mailbox with a size of 6, 12 or 18 bytes (mode 2); and the *Bluetooth*[®] process data with a size of 4 to 46 bytes.

Thus, each *Bluetooth*[®] module uses between 12 and 48 bytes in the process image. The sizes of the input and output process images are always the same.

The first byte contains the control/status byte; the second contains an empty byte.

Process data attach to this directly when the mailbox is hidden. When the mailbox is visible, the first 6, 12 or 18 bytes of process data are overlaid by the mailbox data, depending on their size. Bytes in the area behind the optionally visible mailbox contain basic process data. The internal structure of the *Bluetooth*[®] process data can be found in the documentation for the *Bluetooth*[®] 750-644 RF Transceiver.

The mailbox and the process image sizes are set with the startup tool WAGO-I/O-*CHECK*.

10010 370.	Bluetootii iti iluiiseel							
Input and Output Process Image								
Instance	Byte I	Destination	Daga	vintion				
Instance	High Byte	Low Byte	Desc	ription				
	-	C0/S0	not used	Control/status byte				
	D1	D0						
n	D3	D2	Mailhar (0, 2,	(or 0 words) and				
	D5	D4	Process data	(2-23 words)				
			1100055 uat	(2-25 words)				
	D45	D44						

able 598. Diuelooui Kr-Italiscelvei / 50-044	able 398:	Bluetooth®	RF-Transceiver	750-644
--	-----------	------------	-----------------------	---------

The 750-644 constitutes a special module, whose process data (12, 24 or 48 bytes) occupy on instances in classes 0x67 and 0x68.

13.3.5.15 Vibration Velocity/Bearing Condition Monitoring VIB I/O

750-645

The Vibration Velocity/Bearing Condition Monitoring VIB I/O has a total of 12 bytes of user data in both the Input and Output Process Image (8 bytes of module data and 4 bytes of control/status). The following table illustrates the Input and Output Process Image, which have 8 words mapped into each image. Word alignment is applied.

Table 399: Vibration Velocity/Bearing Condition Monitoring VIB I/O 750-645	I I O I D	
	Table 399: Vibration Velocity/Bea	ring Condition Monitoring VIB I/O 750-645

Input and	put and Output Process Image							
Instance Byte Destination		tination	Description					
Instance	High Byte	Low Byte		Description				
r	-	C0/S0	not used	Control/status byte (log. Channel 1, Sensor input 1)				
11	D1	D0	(log. Ch	Data bytes annel 1, Sensor input 1)				
n±1	-	C1/S1	1 not used Control/status byte (log. Channel 2, Sensor inpu					
11 ' 1	D3	D2	Data bytes (log. Channel 2, Sensor input 2)					
n+2	-	C2/S2	not used Control/status by (log. Channel 3, Sensor					
11+2	D5	D4	Data bytes (log. Channel 3, Sensor input 3)					
n+3	-	C3/S3	not used	Control/status byte (log. Channel 4, Sensor input 2)				
11 - 3	D7	D6	(log. Ch	Data bytes annel 4, Sensor input 2)				

The specialty modules represent 4x3 bytes input and output data and seize 4 Instances in Class (0x67) and 4 Instances in Class (0x68).

13.3.5.16 AS-interface Master Module

750-655

The length of the process image of the AS-interface master module can be set to fixed sizes of 12, 20, 24, 32, 40 or 48 bytes.

It consists of a control or status byte, a mailbox with a size of 0, 6, 10, 12 or 18 bytes and the AS-interface process data, which can range from 0 to 32 bytes.

The AS-interface master module has a total of 6 to maximally 24 words data in both the Input and Output Process Image. Word alignment is applied.

The first Input and output word, which is assigned to an AS-interface master module, contains the status / control byte and one empty byte. Subsequently the mailbox data are mapped, when the mailbox is permanently superimposed (Mode 1).

In the operating mode with suppressible mailbox (Mode 2), the mailbox and the cyclical process data are mapped next.

The following words contain the remaining process dat.

The mailbox and the process image sizes are set with the startup tool WAGO-I/O-*CHECK*.

Input and Output Process Image									
Instance	Byte D	Destination	Description						
mstance	High Byte	Low Byte	Desci	iption					
	-	C0/S0	not used	Control/status byte					
n	D1	D0	Mailbox (0, 3, 5, 6 or 9 words) Process data (0-16 words)						
	D3	D2							
	D5	D4							
	D45	D44							

Table 400: AS-interface Master module 750-655

The specialty modules represent 1x 12...48 bytes input and output data and seize 1 Instance in Class (0x67) and 1 Instance in Class (0x68).

13.3.6 System Modules

13.3.6.1 System Modules with Diagnostics

750-610, -611

The modules provide 2 bits of diagnostics in the Input Process Image for monitoring of the internal power supply.

T-1.1. 101. C+	N (- 1 - 1	D:	750 (10	(11
Table 401 System	windines with	LIAGNOSTICS	/ 20-610	-611
ruble for bystem	infounded with	Diagnostios	150 010,	011

Input Process Image									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
						Diagnostic bit S 2 Fuse	Diagnostic bit S 1 Fuse		

The system modules seize 2 Instances in Class (0x65).

13.3.6.2 Binary Space Module

750-622

The Binary Space Modules behave alternatively like 2 channel digital input modules or output modules and seize depending upon the selected settings 1, 2, 3 or 4 bits per channel. According to this, 2, 4, 6 or 8 bits are occupied then either in the process input or the process output image.

 Table 402: Binary Space Module 750-622 (with behavior like 2 channel digital input)

Input and Output Process Image								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
(Data bit DI 8)	(Data bit DI 7)	(Data bit DI 6)	(Data bit DI 5)	(Data bit DI 4)	(Data bit DI 3)	Data bit DI 2	Data bit DI 1	

The Binary Space Modules seize 2, 4, 6 or 8 Instances in class (0x65) or in Class (0x66).

14 Application Examples

14.1 Test of MODBUS protocol and fieldbus nodes

You require a MODBUS master to test the function of your fieldbus node. For this purpose, various manufacturers offer a range of PC applications that you can, in part, download from the Internet as free of charge demo versions.

One of the programs which is particularly suitable to test your ETHERNET TCP/IP fieldbus node, is for instance **ModScan** from Win-Tech.

Information

Additional Information

A free of charge demo version from ModScan32 and further utilities from Win-Tech can be found in the Internet under: <u>http://www.win-tech.com/html/demos.htm</u>

ModScan32 is a Windows application that works as a MODBUS master.

This program allows you to access the data points of your connected ETHERNET TCP/IP fieldbus node and to proceed with the desired changes.

Information

Additional Information

For a description example relating to the software operation, refer to: <u>http://www.win-tech.com/html/modscan32.htm</u>

14.2 Visualization and Control using SCADA Software

This chapter is intended to give insight into how the WAGO ETHERNET fieldbus coupler/controller can be used for process visualization and control using standard user software.

There is a wide range of process visualization programs, called SCADA Software, from various manufacturers.

Information

Additional Information

For a selection of SCADA products, look under i.e.: <u>http://www.abpubs.demon.co.uk/scadasites.htm</u>

SCADA is the abbreviation for Supervisory Control and Data Acquisition.

It is a user-orientated tool used as a production information system in the areas of automation technology, process control and production monitoring.

The use of SCADA systems includes the areas of visualization and monitoring, data access, trend recording, event and alarm processing, process analysis and targeted intervention in a process (control).

The WAGO ETHERNET fieldbus node provides the required process input and output values.

Note

SCADA software has to provide a MODBUS device driver and support MODBUS/TCP functions!

When choosing suitable SCADA software, ensure that it provides a MODBUS device driver and supports the MODBUS/TCP functions in the coupler.

Visualization programs with MODBUS device drivers are available from i.e. Wonderware, National Instruments, Think&Do or KEPware Inc., some of which are available on the Internet as demo versions.

The operation of these programs is very specific.

However, a few essential steps are described to illustrate the way an application can be developed using a WAGO ETHERNET fieldbus node and SCADA software in principle:

- 1. Load the MODBUS ETHERNET driver and select MODBUS ETHERNET
- 2. Enter the IP address for addressing the fieldbus node

At this point, some programs allow the user to give the node an alias name, i.e. to call the node "Measuring data". The node can then be addressed with this name.

3. Create a graphic object, such as a switch (digital) or a potentiometer (analog)

This object is displayed on the work area.

- 4. Link the object to the desired data point on the node by entering the following data:
 - Node address (IP address or alias name)
 - The desired MODBUS function codes (register/bit read/write)
 - The MODBUS address of the selected channel

Entry is program specific.

Depending on the user software the MODBUS addressing of a bus module can be represented with up to 5 digits.

Example of the MODBUS Addressing

In the case of SCADA Software Lookout from National Instruments the MODBUS function codes are used with a 6 digit coding, whereby the first digit represents the MODBUS table (0, 1, 3 or 4) and implicit the function code (see following table):

Table 403: MODBUS	table and function codes

MODBUS table	MODBUS function code	
0	FC1 or FC15	Reading of input bits or writing of several output bits
1	FC2	Reading of several input bits
3	FC4 or FC 16	Reading of several input registers or writing of several output registers
4	FC3	Reading of several input registers

The following five digits specify the channel number (beginning with 1) of the consecutively numbered digital or analog input and/or output channels.

Examples:

•	Reading/writing the first digital input:	i.e. 0 0000 1
•	Reading/writing the second analog input:	i.e. 3 0000 2

Application Example:

Thus, the digital input channel 2 of the above node "Measuring data" can be read out with the input: "Measuring data. 0 0000 2".

Figure 77: Example SCADA software with MODBUS driver

Information

Additional Information

Please refer to the respective SCADA product manual for a detailed description of the particular software operation.

15 Use in Hazardous Environments

The **WAGO-I/O-SYSTEM 750** (electrical equipment) is designed for use in Zone 2 hazardous areas.

The following sections include both the general identification of components (devices) and the installation regulations to be observed. The individual subsections of the "Installation Regulations" section must be taken into account if the I/O module has the required approval or is subject to the range of application of the ATEX directive.

15.1 Marking Configuration Examples

15.1.1 Marking for Europe according to CENELEC and IEC

Figure 78: Side marking example for ATEX and IEC Ex approved I/O modules according to CENELEC and IEC

DEMKO 08 ATEX 142851 X IECEX PTB 07.0064X I M2 / II 3 GD Ex nA IIC T4

Figure 79: Printing Text detail – Marking example for ATEX and IEC Ex approved I/O modules according to CENELEC and IEC

Table 404: Description of marking example for ATEX and IEC Ex approved I/O modules according to CENELEC and IEC

Printing on Text	Description
DEMKO 08 ATEX 142851 X	Approval body and/or number of the examination
IECEx PTB 07.0064X	certificate
I M2 / II 3 GD	Explosion protection group and Unit category
Ex nA	Type of ignition and extended identification
IIC	Explosion protection group
Τ4	Temperature class

Figure 80: Side marking example for Ex i and IEC Ex i approved I/O modules according to CENELEC and IEC

TUEV 07 ATEX554086 X II 3(1) D Ex tD [iaD] A22 IP6X T135°C I(M2) [Ex ia] I II 3(1) G Ex nA [ia] IIC T4 TUN 09.0001X Ex tD [iaD] A22 IP6X T135°C [Ex ia] I Ex nA [ia] IIC T4

Figure 81: Text detail – Marking example for Ex i and IEC Ex i approved I/O modules according to CENELEC and IEC

Inscription text	Description
TÜV 07 ATEX 554086 X	Approving authority or
TUN 09.0001X	certificate numbers
Dust	
II	Device group: All except mining
3(1)D	Device category: Zone 22 device (Zone 20 subunit)
Ex	Explosion protection mark
tD	Protection by enclosure
[iaD]	Approved in accordance with "Dust intrinsic safety" standard
A22	Surface temperature determined according to Procedure A, use in Zone 22
IP6X	Dust-tight (totally protected against dust)
T 135°C	Max. surface temp. of the enclosure (no dust bin)
Mining	
Ι	Device group: Mining
(M2)	Device category: High degree of safety
[Ex ia]	Explosion protection: Mark with category of type of
	protection intrinsic safety: Even safe when two
	errors occur
Ι	Device group: Mining
Gases	
II	Device group: All except mining
3(1)G	Device category: Zone 2 device (Zone 0 subunit)
Ex	Explosion protection mark
nA	Type of protection: Non-sparking operating equipment
[ia]	Category of type of protection intrinsic safety: Even safe when two errors occur
IIC	Explosion Group
T4	Temperature class: Max. surface temperature 135°C

Table 405: Description of marking example for Ex i and IEC Ex i approved I/O modules according to CENELEC and IEC

15.1.2 Marking for America according to NEC 500

Figure 82: Side marking example for I/O modules according to NEC 500

CLIDIV 2 Grp. A B C D op temp. code T4 USTED 222A AND 22201

Figure 83: Text detail – Marking example for I/O modules according to NEC 500

Table 406: Descrip	otion of marking exar	nple for I/O modules a	ccording to NEC 500
		-p	

Printing on Text	Description	
CL 1	Explosion protection group (condition of use	
	category)	
DIV 2	Area of application (zone)	
Grp. ABCD	Explosion group (gas group)	
Optemp code T4	Temperature class	

15.2 Installation Regulations

In the **Federal Republic of Germany**, various national regulations for the installation in explosive areas must be taken into consideration. The basis for this forms the working reliability regulation, which is the national conversion of the European guideline 99/92/E6. They are complemented by the installation regulation EN 60079-14. The following are excerpts from additional VDE regulations:

Table 407: VDE Installation Regulations in Germany

DIN VDE 0100	Installation in power plants with rated voltages up to 1000 V
DIN VDE 0101	Installation in power plants with rated voltages above 1 kV
DIN VDE 0800	Installation and operation in telecommunication plants including
	information processing equipment
DIN VDE 0185	lightning protection systems

The **USA** and **Canada** have their own regulations. The following are excerpts from these regulations:

Table 408: Installation Regulations in USA and Canada

NFPA 70	National Electrical Code Art. 500 Hazardous Locations
ANSI/ISA-RP 12.6-1987	Recommended Practice
C22.1	Canadian Electrical Code

NOTICE

Notice the following points

When using the **WAGO-I/O SYSTEM 750** (electrical operation) with Ex approval, the following points are mandatory:

15.2.1 Special Conditions for Safe Operation of the ATEX and IEC Ex (acc. DEMKO 08 ATEX 142851X and IECEx PTB 07.0064)

The fieldbus-independent I/O modules of the WAGO-I/O-SYSTEM 750-.../...-... must be installed in an environment with degree of pollution 2 or better. In the final application, the I/O modules must be mounted in an enclosure with IP 54 degree of protection at a minimum with the following exceptions:

- I/O modules 750-440, 750-609 and 750-611 must be installed in an IP 64 minimum enclosure.
- I/O module 750-540 must be installed in an IP 64 minimum enclosure for 230 V AC applications.
- I/O module 750-440 may be used up to max. 120 V AC.

When used in the presence of combustible dust, all devices and the enclosure shall be fully tested and assessed in compliance with the requirements of IEC 61241-0:2004 and IEC 61241-1:2004.

When used in mining applications the equipment shall be installed in a suitable enclosure according to EN 60079-0:2006 and EN 60079-1:2007.

I/O modules fieldbus plugs or fuses may only be installed, added, removed or replaced when the system and field supply is switched off or the area exhibits no explosive atmosphere.

DIP switches, coding switches and potentiometers that are connected to the I/O module may only be operated if an explosive atmosphere can be ruled out.

I/O module 750-642 may only be used in conjunction with antenna 758-910 with a max. cable length of 2.5 m.

To exceed the rated voltage no more than 40%, the supply connections must have transient protection.

The permissible ambient temperature range is 0 °C to +55 °C.

15.2.2 Special conditions for safe use (ATEX Certificate TÜV 07 ATEX 554086 X)

- For use as Gc- or Dc-apparatus (in zone 2 or 22) the field bus independent I/O modules WAGO-I/O-SYSTEM 750-*** shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) EN 60079-0, EN 60079-11, EN 60079-15, EN 61241-0 and EN 61241-1. For use as group I, electrical apparatus M2, the apparatus shall be erected in an enclosure that ensures a sufficient protection according to EN 60079-0 and EN 60079-1 and the degree of protection IP64. The compliance of these requirements and the correct installation into an enclosure or a control cabinet of the devices shall be certified by an ExNB.
- 2. If the interface circuits are operated without the field bus coupler station type 750-3./...-... (DEMKO 08 ATEX 142851 X), measures must be taken outside of the device so that the rating voltage is not being exceeded of more than 40% because of transient disturbances.
- 3. DIP-switches, binary-switches and potentiometers, connected to the module may only be actuated when explosive atmosphere can be excluded.
- 4. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded. This is although and in particular valid for the interfaces "CF-Card", "USB", "Fieldbus connection", "Configuration and programming interface", "antenna socket", "D-Sub" and the "Ethernet interface". These interfaces are not energy limited or intrinsically safe circuits. An operating of those circuits is in the behalf of the operator.
- 5. For the types 750-606, 750-625/000-001, 750-487/003-000, 750-484 and 750-633 the following shall be considered: The interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in EN 60664-1.
- 6. For the type 750-601 the following shall be considered: Do not remove or replace the fuse when the apparatus is energized.
- 7. The ambient temperature range is: $0^{\circ}C \le T_a \le +55^{\circ}C$ (for extended details please note certificate).

8. The following warnings shall be placed nearby the unit:

▲ WARNING

Do not remove or replace fuse when energized!

If the module is energized do not remove or replace the fuse.

WARNING

Do not separate when energized! Do not separate the module when energized!

▲ WARNING

Separate only in a non-hazardous area! Separate the module only in a non-hazardous area!

15.2.3 Special conditions for safe use (IEC-Ex Certificate TUN 09.0001 X)

- 1. For use as Dc- or Gc-apparatus (in zone 2 or 22) the fieldbus independent I/O modules WAGO-I/O-SYSTEM 750-*** shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) IEC 60079-0, IEC 60079-11, IEC 60079-15, IEC 61241-0 and IEC 61241-1. For use as group I, electrical apparatus M2, the apparatus shall be erected in an enclosure that ensures a sufficient protection according to IEC 60079-0 and IEC 60079-1 and the degree of protection IP64. The compliance of these requirements and the correct installation into an enclosure or a control cabinet of the devices shall be certified by an ExCB.
- 2. Measures have to be taken outside of the device that the rating voltage is not being exceeded of more than 40% because of transient disturbances.
- 3. DIP-switches, binary-switches and potentiometers, connected to the module may only be actuated when explosive atmosphere can be excluded.
- 4. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded. This is although and in particular valid for the interfaces "CF-Card", "USB", "Fieldbus connection", "Configuration and programming interface", "antenna socket", "D-Sub" and the "Ethernet interface". These interfaces are not energy limited or intrinsically safe circuits. An operating of those circuits is in the behalf of the operator.
- 5. For the types 750-606, 750-625/000-001, 750-487/003-000, 750-484 and 750-633 the following shall be considered: The interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in IEC 60664-1.
- 6. For the type 750-601 the following shall be considered: Do not remove or replace the fuse when the apparatus is energized.
- 7. The ambient temperature range is: $0^{\circ}C \le T_a \le +55^{\circ}C$ (For extensions please see the certificate).

8. The following warnings shall be placed nearby the unit:

▲ WARNING

Do not remove or replace fuse when energized!

If the module is energized do not remove or replace the fuse.

WARNING

Do not separate when energized! Do not separate the module when energized!

▲ WARNING

Separate only in a non-hazardous area! Separate the module only in a non-hazardous area!

15.2.4 ANSI/ISA 12.12.01

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, D or non-hazardous locations only.

This equipment is to be fitted within tool-secured enclosures only.

Explosion hazard!

Explosion hazard - substitution of components may impair suitability for Class I, Div. 2.

▲ WARNING

Disconnect device when power is off and only in a non-hazardous area!

Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous near each operator accessible connector and fuse holder." When a fuse is provided, the following information shall be provided: "A switch suitable for the location where the equipment is installed shall be provided to remove the power from the fuse."

For devices with Ethernet connectors:

"Only for use in LAN, not for connection to telecommunication circuits".

Use only with antenna module 758-910! Use Module 750-642 only with antenna module 758-910.

For Couplers/Controllers and Economy bus modules only: "The configuration Interface Service connector is for temporary connection only. Do not connect or disconnect unless the area is known to be nonhazardous. Connection or disconnection in an explosive atmosphere could result in an explosion.

WARNING

Devices containing fuses must not be fitted into circuits subject to over loads! Devices containing fuses must not be fitted into circuits subject to over loads, e.g. motor circuits!

▲ WARNING

Do not connect or disconnect SD-Card unless the area known to be free of ignitable concentrations of flammable gases or vapors!

Do not connect or disconnect SD-Card while circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapors.

Information Additional Information

Proof of certification is available on request. Also take note of the information given on the module technical information sheet. The Instruction Manual, containing these special conditions for safe use, must be readily available to the user.

16 Appendix

16.1 MIB II Groups

16.1.1 System Group

The system group contains general information about the coupler/controller.

Identifier	Entry	Access	Description
1.3.6.1.2.1.1.1	sysDescr	R	This entry contains the device identification. The object has a fixed code (e.g., "WAGO 750-841")
1.3.6.1.2.1.1.2	sysObjectID	R	This entry contains the manufacturer's authorization identification.
1.3.6.1.2.1.1.3	sysUpTime	R	This entry contains the time (in hundredths of a second) since the management unit has been last reset.
1.3.6.1.2.1.1.4	sysContakt	R/W	This entry contains the identification and contact information for the system contact person.
1.3.6.1.2.1.1.5	sysName	R/W	This entry contains the administration-assigned device name.
1.3.6.1.2.1.1.6	sysLocation	R/W	This entry contains the node's physical location.
1.3.6.1.2.1.1.7	sysServices	R	This entry designates the quantity of services that this coupler/controller contains.

Table 409: MIB II – System group

16.1.2 Interface Group

The interface group contains information and statistics about the device interface.

A device interface describes the Ethernet interface of a coupler/controller and provides status information on the physical Ethernet ports as well as on the internal loopback interface.

Identifier	Entry	Access	Description
1.3.6.1.2.1.2.1	ifNumber	R	Number of network interfaces in this system
1.3.6.1.2.1.2.2	ifTable	-	List of network interfaces
1.3.6.1.2.1.2.2.1	ifEntry	-	Network interface entry
1.3.6.1.2.1.2.2.1.1	ifIndex	R	This entry contains a unique value for each interface
1.3.6.1.2.1.2.2.1.2	ifDescr	R	This entry contains the name of the manufacturer, the product name, and the version of the hardware interface: e.g., "WAGO Kontakttechnik GmbH 750- 841: Rev 1.0"
1.3.6.1.2.1.2.2.1.3	ifType	R	This entry describes the type of interface. ETHERNET CSMA/CD = 6 Software Loopback = 24
1.3.6.1.2.1.2.2.1.4	ifMtu	R	This entry specifies the largest transfer unit; i.e., the maximum telegram length that can be transferred via this interface.
1.3.6.1.2.1.2.2.1.5	ifSpeed	R	This entry indicates the interface speed in bits per second.
1.3.6.1.2.1.2.2.1.6	ifPhysAddress	R	This entry indicates the physical address of the interface. For example, for Ethernet, this entry contains a MAC ID.
1.3.6.1.2.1.2.2.1.7	ifAdmin-Status	R/W	This entry specifies the desired state of the interfaces. Possible values are: up(1): Ready for operation for transmission and reception down(2): Interface is switched off testing(3): Interface is in test mode
1.3.6.1.2.1.2.2.1.8.	ifOperStatus	R	This entry indicates the current operational state of the interface.
1.3.6.1.2.1.2.2.1.9.	ifLastChange	R	This entry indicates the value of the sysUpTime when the state was last changed.
1.3.6.1.2.1.2.2.1.10	ifInOctets	R	This entry gives the total number of bytes received via interface.
1.3.6.1.2.1.2.2.1.11	ifInUcastPkts	R	This entry indicates the number of received unicast packets delivered to a higher layer.
1.3.6.1.2.1.2.2.1.12	ifInNUcastPkts	R	This entry indicates the number of received broad and multicast packets delivered to a higher layer.
1.3.6.1.2.1.2.2.1.13	ifInDiscards	R	This entry indicates the number of packets that were discarded even though no errors had been detected.
1.3.6.1.2.1.2.2.1.14	ifInErrors	R	This entry indicates the number of received packets that contained errors preventing them from being deliverable to a higher layer.

Table 410: MIB II – Interface Group

Identifier	Entry	Access	Description
1.3.6.1.2.1.2.2.1.15	IfInUnknown- Protos	R	This entry indicates the number of received packets sent to an unknown or unsupported port number.
1.3.6.1.2.1.2.2.1.16	ifOutOctets	R	This entry gives the total number of bytes sent via interface.
1.3.6.1.2.1.2.2.1.17	ifOutUcastPkts	R	This entry contains the number of outgoing unicast packets delivered to a higher layer.
1.3.6.1.2.1.2.2.1.18	ifOutNUcastPkts	R	This entry indicates the number of outgoing broad and multicast packets delivered to a higher layer.
1.3.6.1.2.1.2.2.1.19	ifOutDiscards	R	This entry indicates the number of packets that were discarded even though no errors had been detected.
1.3.6.1.2.1.2.2.1.20	ifOutErrors	R	This entry indicates the number of packets that could not be transmitted because of errors.

Table 410: MIB II – Interface Group

16.1.3 IP Group

The IP group contains information about IP communication.

Table 411:	MIB II –	IP Group
14010 1111.	11110 11	II Oloup

Identifier	Entry	Access	Description
1.3.6.1.2.1.4.1	ipForwarding	R/W	1: Host is a router; 2: Host is not a router
1.3.6.1.2.1.4.2	ipDefaultTTL	R/W	Default value for the Time-To-Live field of each IP frame.
1.3.6.1.2.1.4.3	ipInReceives	R	Number of received IP frames, including those received in error.
1.3.6.1.2.1.4.4	ipInHdrErrors	R	Number of received IP frames with header errors.
.3.6.1.2.1.4.5	ipInAddrErrors	R	Number of received IP frames with a misdirected IP address.
1.3.6.1.2.1.4.6	ipForwDatagrams	R	Number of received IP frames passed on (routed)
1.3.6.1.2.1.4.7	ipUnknownProtos	R	Number of received IP frames with an unknown protocol type.
1.3.6.1.2.1.4.8	ipInDiscards	R	Number of received IP frames rejected although no disturbance was present.
1.3.6.1.2.1.4.9	ipInDelivers	R	Number of received IP frames passed on a higher protocol layer.
1.3.6.1.2.1.4.10	ipOutRequests	R	Number of sent IP frames
1.3.6.1.2.1.4.11	ipOutDiscards	R	Number of rejected IP Frames that should have been sent.
1.3.6.1.2.1.4.12	ipOutNoRoutes	R	Number of sent IP frames rejected because of incorrect routing information.
1.3.6.1.2.1.4.13	ipReasmTimeout	R	Minimum time duration until an IP frame is re- assembled.
1.3.6.1.2.1.4.14	ipReasmReqds	R	Minimum number of the IP fragments for building up and passing on.
1.3.6.1.2.1.4.15	ipReasmOKs	R	Number of IP frames re-assembled successfully.
1.3.6.1.2.1.4.16	ipReasmFails	R	Number of IP frames not re-assembled successfully.
1.3.6.1.2.1.4.17	ipFragOKs	R	Number of IP frames fragmented and passed on.
1.3.6.1.2.1.4.18	ipFragFails	R	Number of IP frames that should have been fragmented but could not be, because their don't fragment bit was set in the header.
1.3.6.1.2.1.4.19	ipFragCreates	R	Number of generated IP fragment frames
1.3.6.1.2.1.4.20	ipAddrTable	-	Table of all local IP addresses of the coupler/controller.
1.3.6.1.2.1.4.20.1	ipAddrEntry	-	Address information for an entry
1.3.6.1.2.1.4.20.1.1	ipAdEntAddr	R	The IP address corresponding to the entry's
			address information
1.3.6.1.2.1.4.20.1.2	ipAdEntIfIndex	R	Index of the interface
1.3.6.1.2.1.4.20.1.3	ipAdEntNetMask	R	The entry's associated subnet mask
1.3.6.1.2.1.4.20.1.4	ipAdEntBcastAddr	R	Value of the last significant bit in the IP broadcast address
1.3.6.1.2.1.4.20.1.5	IpAdEntReasm- MaxSize	R	The size of the longest IP telegram that can be defragmented (reassembled) again.
1.3.6.1.2.1.4.23	ipRoutingDiscards	R	Number of deleted routing entries

16.1.4 IpRoute Table Group

The IP route table contains information about the routing table in the coupler/controller.

Identifier	Entry	Access	Description	
1.3.6.1.2.1.4.21	ipRouteTable	-	IP routing table	
1.3.6.1.2.1.4.21.1	ipRouteEntry	-	A routing entry for a particular destination	
1.3.6.1.2.1.4.21.1.1	ipRouteDest	R/W	This entry indicates the destination address of the routing entry	
1.3.6.1.2.1.4.21.1.2	ipRouteIfIndex	R/W	This entry indicates the index of the interface, which is the next route destination	
1.3.6.1.2.1.4.21.1.3	ipRouteMetric1	R/W	The primary route to the target system	
1.3.6.1.2.1.4.21.1.4	ipRouteMetric2	R/W	An alternative route to the target system	
1.3.6.1.2.1.4.21.1.5	ipRouteMetric3	R/W	An alternative route to the target system	
1.3.6.1.2.1.4.21.1.6	ipRouteMetric4	R/W	An alternative route to the target system	
.3.6.1.2.1.4.21.1.7	ipRouteNextHop	R/W	The IP address of the next route section	
1.3.6.1.2.1.4.21.1.8	ipRouteType	R/W	The route type	
1.3.6.1.2.1.4.21.1.9	ipRouteProto	R	Routing mechanism via which the route is developed	
1.3.6.1.2.1.4.21.1.10	ipRouteAge	R/W	Number of seconds since then the route was last renewed/examined	
1.3.6.1.2.1.4.21.1.11	ipRouteMask	R/W	This entry contents the subnet mask for this entry	
1.3.6.1.2.1.4.21.1.12	ipRouteMetric5	R/W	An alternative route to the target system	
1.3.6.1.2.1.4.21.1.13	ipRouteInfo	R/W	A reference to a special MIB	

Table 412: MIB II – IpRoute Table Group

16.1.5 ICMP Group

Table 413: MIB II – ICMP Group

Identifier	Entry	Access	Description
1.3.6.1.2.1.5.1	icmpInMsgs	R	Number of received ICMP messages
1.3.6.1.2.1.5.2	icmpInErrors	R	Number of received ICMP errors containing ICMP-specific errors
1.3.6.1.2.1.5.3	icmpInDestUnreachs	R	Number of received ICMP destination unreachable messages
1.3.6.1.2.1.5.4	icmpInTimeExcds	R	Number of received ICMP time exceeded messages
1.3.6.1.2.1.5.5	icmpInParmProbs	R	Number of received ICMP parameter problem messages
1.3.6.1.2.1.5.6	icmpInSrcQuenchs	R	Number of received ICMP source quench messages
1.3.6.1.2.1.5.7	icmpInRedirects	R	Number of received ICMP redirect messages
1.3.6.1.2.1.5.8	icmpInEchos	R	Number of received ICMP echo request messages (Ping)
1.3.6.1.2.1.5.9	icmpInEchoReps	R	Number of received ICMP echo reply messages (Ping)
1.3.6.1.2.1.5.10	icmpInTimestamps	R	Number of received ICMP timestamp request messages
1.3.6.1.2.1.5.11	icmpInTimestampReps	R	Number of received ICMP timestamp reply messages
1.3.6.1.2.1.5.12	icmpInAddrMasks	R	Number of received ICMP address mask request messages
1.3.6.1.2.1.5.13	icmpInAddrMaskReps	R	Number of received ICMP address mask reply messages
1.3.6.1.2.1.5.14	icmpOutMsgs	R	Number of sent ICMP messages
1.3.6.1.2.1.5.15	icmpOutErrors	R	Number of sent ICMP messages that could not be sent due to errors
1.3.6.1.2.1.5.16	icmpOutDestUnreachs	R	Number of sent ICMP destination unreachable messages
1.3.6.1.2.1.5.17	icmpOutTimeExcds	R	Number of sent ICMP time exceeded messages
1.3.6.1.2.1.5.18	icmpOutParmProbs	R	Number of sent ICMP parameter problem messages
1.3.6.1.2.1.5.19	icmpOutSrcQuenchs	R	Number of sent ICMP source quench messages
1.3.6.1.2.1.5.20	icmpOutRedirects	R	Number of sent ICMP redirection messages
1.3.6.1.2.1.5.21	icmpOutEchos	R	Number of sent ICMP echo request messages
1.3.6.1.2.1.5.22	icmpOutEchoReps	R	Number of sent ICMP echo reply messages
1.3.6.1.2.1.5.23	icmpOutTimestamps	R	Number of sent ICMP timestamp request messages
1.3.6.1.2.1.5.24	icmpOutTimestampReps	R	Number of sent ICMP timestamp reply messages
1.3.6.1.2.1.5.25	icmpOutAddrMasks	R	Number of sent ICMP address mask request messages
1.3.6.1.2.1.5.26	icmpOutAddrMaskReps	R	Number of sent ICMP address mask reply messages

16.1.6 TCP Group

Table 414: MIB II – TCP Group

Identifier	Entry	Access	Description
1.3.6.1.2.1.6.1	tcpRtoAlgorithm	R	Retransmission time: $1 = other$, 2 = constant, 3 = RSRE, 4 = VANJ
1.3.6.1.2.1.6.2	tcpRtoMin	R	Minimum value for the retransmission timer
1.3.6.1.2.1.6.3	tcpRtoMax	R	Maximum value for the retransmission timer
1.3.6.1.2.1.6.4	tcpMaxConn	R	Number of maximum TCP connections that can exist simultaneously
1.3.6.1.2.1.6.5	tcpActiveOpens	R	Number of existing active TCP connections
1.3.6.1.2.1.6.6	tcpPassiveOpens	R	Number of existing passive TCP connections
1.3.6.1.2.1.6.7	tcpAttemptFails	R	Number of failed connection attempts
1.3.6.1.2.1.6.8	tcpEstabResets	R	Number of connection resets
1.3.6.1.2.1.6.9	tcpCurrEstab	R	The number of TCP connections for which the current state is either Established or Close-Wait
1.3.6.1.2.1.6.10	tcpInSegs	R	Number of received TCP frames including the error frames
1.3.6.1.2.1.6.11	tcpOutSegs	R	Number of correctly sent TCP frames with data
1.3.6.1.2.1.6.12	tcpRetransSegs	R	Number of sent TCP frames retransmitted because of errors
1.3.6.1.2.1.6.13	tcpConnTable	-	For each existing connection, a table entry is created
1.3.6.1.2.1.6.13.1	tcpConnEntry	-	Table entry for connection
1.3.6.1.2.1.6.13.1.1	tcpConnState	R	This entry indicates the status of the TCP connection
1.3.6.1.2.1.6.13.1.2	tcpConnLocalAddress	R	The entry contains the IP address for the connection. For a server, this entry is constant 0.0.0.0
1.3.6.1.2.1.6.13.1.3	tcpConnLocalPort	R	The entry indicates the port number of the TCP connection.
1.3.6.1.2.1.6.13.1.4	tcpConnRemAddress	R	The entry contains the remote IP address of the TCP connection.
1.3.6.1.2.1.6.13.1.5	tcpConnRemPort	R	The entry contains the remote port of the TCP connection.
1.3.6.1.2.1.6.14	tcpInErrs	R	Number of received incorrect TCP frames
1.3.6.1.2.1.6.15	tcpOutRsts	R	Number of sent TCP frames with set RST flag

16.1.7 UDP Group

Table 415: MIB II – UDP Group

Identifier	Entry	Access	Description
1.3.6.1.2.1.7.1	udpInDatagrams	R	Number of received UDP frames that could be passed on to the appropriate applications
1.3.6.1.2.1.7.2	udpNoPorts	R	Number of received UDP frames that could not be passed on to the appropriate applications (port unreachable)
1.3.6.1.2.1.7.3	udpInErrors	R	Number of received UDP frames that could not be passed on to the appropriate applications for other reasons.
1.3.6.1.2.1.7.4	udpOutDatagrams	R	Number of sent UDP frames
1.3.6.1.2.1.7.5	udpTable	-	A table entry is created for each application that received UDP frames
1.3.6.1.2.1.7.5.1	udpEntry	-	Table entry for an application that received an UDP frame
1.3.6.1.2.1.7.5.1.1	udpLocalAddress	R	IP address of the local UDP server
1.3.6.1.2.1.7.5.1.2	udpLocalPort	R	Port number of the local UDP server

16.1.8 SNMP Group

Table 416: MIB II – SNMP Group

Identifier	Entry	Access	Description
1.3.6.1.2.1.11.1	snmpInPkts	R	Number of received SNMP frames
1.3.6.1.2.1.11.2	snmpOutPkts	R	Number of sent SNMP frames
1.3.6.1.2.1.11.3	snmpInBadVersions	R	Number of received SNMP frames with an
			invalid version number
1.3.6.1.2.1.11.4	snmpInBadCommunity-	R	Number of received SNMP frames with an
	Names		invalid community
1.3.6.1.2.1.11.5	snmpInBadCommunity	R	Number of received SNMP frames whose
	Uses		community did not have sufficient authorization
12(12)111(D	for the actions that it tried to execute
1.3.0.1.2.1.11.0	snmpinASNParseErrs	ĸ	incorrect structure
136121118	spmpInTooBigs	P	Number of received SNMP frames that
1.5.0.1.2.1.11.0	simpinroobigs	К	acknowledged the result too Big
136121119	snmpInNoSuchNames	R	Number of received SNMP frames that
	p		acknowledged the result noSuchName
1.3.6.1.2.1.11.10	snmpInBadValues	R	Number of received SNMP frames that
	1		acknowledged the result bad value
1.3.6.1.2.1.11.11	snmpInReadOnlys	R	Number of received SNMP frames that
			acknowledged the result readOnly
1.3.6.1.2.1.11.12	snmpInGenErrs	R	Number of received SNMP frames that
			acknowledged the result genError
1.3.6.1.2.1.11.13	snmpInTotalReqVars	R	Number of received SNMP frames with valid
1.0.6.1.0.1.1.1.1.4			GET or GET-NEXT requests
1.3.6.1.2.1.11.14	snmpInTotalSetVars	R	Number of received SNMP frames with valid
1261211115	annun In Cat Da aveasta	D	SET requests
1.3.6.1.2.1.11.15	snmpinGetRequests	K D	Number of GET NEXT requests received and processed
1.3.0.1.2.1.11.10	simplinGetNexts	ĸ	number of GET-NEAT requests received and
1361211117	snmnInSetRequests	R	Number of SET requests received and processed
1361211118	snmpInGetResponses	R	Number of received GET responses
1361211119	snmpInOctresponses	R	Number of received trans
1361211120	snmpOutTooBigs	R	Number of sent SNMP frames that contained the
1.5.0.1.2.1.11.20	simpourroobigs	K	result too Big
1.3.6.1.2.1.11.21	snmpOutNoSuchNames	R	Number of sent SNMP frames that contained the
	I I I I I I I I I I I I I I I I I I I		result noSuchName
1.3.6.1.2.1.11.22	snmpOutBadValues	R	Number of sent SNMP frames that contained the
	1		result bad value
1.3.6.1.2.1.11.24	SnmpOutGenErrs	R	Number of sent SNMP frames that contained the
			result genErrs
1.3.6.1.2.1.11.25	snmpOutGetRequests	R	Number of GET requests sent
1.3.6.1.2.1.11.26	SnmpOutGetNexts	R	Number of GET NEXT requests sent
1.3.6.1.2.1.11.27	snmpOutSetRequests	R	Number of SET requests sent
1.3.6.1.2.1.11.28	snmpOutGetResponses	R	Number of GET responses sent
1.3.6.1.2.1.11.29	snmpOutTraps	R	Number of traps sent
1.3.6.1.2.1.11.30	snmpEnableAuthenTraps	R/W	Authentification failure traps $(1 = \text{on}, 2 = \text{off})$

16.2 WAGO MIB Groups

16.2.1 Company Group

The company group contains general information about the company WAGO Kontakttechnik GmbH & Co. KG.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.1.1	wagoName	R	Company's registered name Default value: "WAGO Kontakttechnik GmbH & Co. KG"
1.3.6.1.4.1.13576.1.2	wagoDescrition	R	Description of company Default value: "WAGO Kontakttechnik GmbH & Co. KG, Hansastr. 27, D-32423 Minden"
1.3.6.1.4.1.13576.1.3	wagoURL	R	URL for company web site Default value: "www.wago.com"

Table 417: WAGO MIB – Company Group

16.2.2 Product Group

The product group contains information about the controller.

Table 418: WAGO MIB – Product Group	,
Tuote file willoo hillo file file	

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.1	wioArticleName	R	Name of article Default value: "750-8xx/000-000"
1.3.6.1.4.1.13576.10.1.2	wioArticleDescription	R	Description of article Default value: "WAGO Ethernet (10/100MBit) FBC"
1.3.6.1.4.1.13576.10.1.3	wioSerialNumber	R	Serial number of article Default value: "SNxxxxxxx- Txxxxx-mac 0030DExxxxxx"
1.3.6.1.4.1.13576.10.1.4	wioMacAddress	R	MAC address of article Default value: "0030DExxxxxx"
1.3.6.1.4.1.13576.10.1.5	wioURLDatasheet	R	URL to datasheet of article Default value: "http://www.wago.com/ wagoweb/documentation/navigate/nm 0dce.htm#ethernet"
1.3.6.1.4.1.13576.10.1.6	wioURLManual	R	URL to manual of article Default value: "http://www.wago.com/ wagoweb/documentation/navigate/nm 0dce.htm#ethernet"

WAGO-I/O-SYSTEM 750 750-881 Programmable Fieldbus Controller ETHERNET

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.7	wioDeviceClass	R	Device class
			10 = controller
			20 = coupler
			30 = switch
			40 = display
			50 = sensor
			60 = actuator
1.3.6.1.4.1.13576.10.1.8	wioDeviceGroup	R	Device group
	_		10 = Serie 750
			20 = Serie 758
			30 = Serie 767
			40 = Serie 762 PERSPECTO

16.2.3 Versions Group

The version group contains information about the hardware/software versions used in the controller.

Table 419: WAGO MIB - Versions Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.10.1	wioFirmwareIndex	R	Index of firmware version
1.3.6.1.4.1.13576.10.1.10.2	wioHardwareIndex	R	Index of hardware version
1.3.6.1.4.1.13576.10.1.10.3	wioFwlIndex	R	Index of software version from
			firmware loader
1.3.6.1.4.1.13576.10.1.10.4	wioFirmwareVersion	R	Complete firmware string

16.2.4 Real-Time Clock Group

The real-time clock group contains information about the system's real-time clock.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.11.1	wioRtcDateTime	R/W	Date/time of coupler in UTC as string. For writing date/time use the following string time 11:22:33 date 13-1-2007 Default value: "time xx:xx:xx date xx-xx-xxxx (UTC)"
1.3.6.1.4.1.13576.10.1.11.2	wioRtcTime	R/W	Date/time of coupler in UTC as integer in seconds from 1970-01- 01 Default value: "0"
1.3.6.1.4.1.13576.10.1.11.3	wioTimezone	R/W	"Actual time zone of article in hours (-12 - +12) Default value: "0"
1.3.6.1.4.1.13576.10.1.11.4	wioRtcHourMode	R	Hour mode 0 = 12h mode 1 = 24h mode Default value: "0"
1.3.6.1.4.1.13576.10.1.11.5	wioRtcBatteryStatus	R	RTC battery status: 0 = ok 1 = battery empty Default value: "1"
1.3.6.1.4.1.13576.10.1.11.6	wioRtcDayLightSaving	R/W	Time offset of 1 hour: 0 = not offset 1 = offset 1 hour (DayLightSaving) Default value: "0"

Table 420: WAGO MIB – Real Time Clock Group

16.2.5 Ethernet Group

The Ethernet group contains the settings for the controller on the Ethernet.

Table 421: WAGO MIB - Ethernet Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.12.1	wioEthernetMode	R/W	IP configuration of Ethernet
			connection:
			0 = fix Ip address
			1 = dynamic IP address over Bootp
			2 = dynamic IP address over DHCP
			Default value: "1"
1.3.6.1.4.1.13576.10.1.12.2	wioIp	R/W	Actual IP address of coupler
1.3.6.1.4.1.13576.10.1.12.3	wioSubnetMask	R/W	Actual subnet mask of coupler
1.3.6.1.4.1.13576.10.1.12.4	wioGateway	R/W	Actual gateway IP of coupler
1.3.6.1.4.1.13576.10.1.12.5	wioHostname	R/W	Actual host name of coupler
1.3.6.1.4.1.13576.10.1.12.6	wioDomainName	R/W	Actual domain name of coupler
1.3.6.1.4.1.13576.10.1.12.7	wioDnsServer1	R/W	IP address of first DNS server
1.3.6.1.4.1.13576.10.1.12.8	wioDnsServer2	R/W	IP address of second DNS server

16.2.6 Actual Error Group

The actual error group contains information about the last system status/error status.

Table 422: WAGO MIB – Actual Error Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.20.1	wioErrorGroup	R	Error group of last error
1.3.6.1.4.1.13576.10.1.20.2	wioErrorCode	R	Error code of last error
1.3.6.1.4.1.13576.10.1.20.3	wioErrorArgument	R	Error argument of last error
1.3.6.1.4.1.13576.10.1.20.4	wioErrorDescription	R	Error description string

16.2.7 PLC Project Group

The PLC project group contains information about the controller's PLC program.

Table 423. WAGO MID – I LC Hoject Gloup

Identifier	Entry Access		Description
1.3.6.1.4.1.13576.10.1.30.1	wioProjectId	R	ID of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.2	wioProjectDate	R	Date of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.3	wioProjectName	R	Name of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.4	wioProjectTitle R 7		Title of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.5	wioProjectVersion	R	Version of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.6	wioProjectAuthor	R	Author of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.7	wioProjectDescription	R	Description of CoDeSys project
1.3.6.1.4.1.13576.10.1.30.8	wioNumberOflecTasks	R	Number of IEC tasks in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9	wioIecTaskTable	-	
1.3.6.1.4.1.13576.10.1.30.9.1	wioIecTaskEntry	-	
1.3.6.1.4.1.13576.10.1.30.9.1.1	wioIecTaskId	R	ID of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.2	wioIecTaskName	R	Name of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.3	wioIecTaskStatus	R	Status of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.4	wioIecTaskMode	R	Mode of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.5	wioIecTaskPriority	R	Priority of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.6	wioIecTaskInterval	R	Interval of cyclic IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.7	wioIecTaskEvent	R	Event for IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.8	wioIecTaskCycleCount	R	Count of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.9	wioIecTaskCycleTime	R	Last cycle time of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.1 0	wioIecTaskCycleTime- Min	R	Minimal cycle time of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.1 1	wioIecTaskCycleTime- Max	R	Maximal cycle time of IEC task in the CoDeSys project
1.3.6.1.4.1.13576.10.1.30.9.1.1 2	wioIecTaskCycleTime- Avg	R	Average cycle time of IE task in the CoDeSys project

16.2.8 Http Group

The Http group contains information and settings for the controller's Web server.

Table 424.	WAGO M	IB – Htt	n Groun
1 4010 424.	W100 M	ID III	p Oroup

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.1.1	wioHttpEnable	R/W	Enable/disable the port of the
			webserver:
			0 = port of webserver disable
			1 = port of webserver enable
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.1.2	wioHttpAuthen-	R/W	Enable/disable the authentication on the
	ticationEnable		websides:
			0 = authentication disabled
			1 = authentication enable
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.1.3	wioHttpPort	R/W	Port of the http web server
	-		Default value: { 80 }

16.2.9 Ftp Group

The Ftp group contains information and settings for the controller's Ftp server.

Tuble 125: WIIGO MILD TUP Gloup

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.2.1	wioFtpEnable	R/W	Enable/disable the port of the ftp server
	-		0 = port of ftp server disable
			1 = port of ftp server enable
			Default value: { 1 }

16.2.10 Sntp Group

The Sntp group contains information and settings for the controller's Sntp server.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.3.1	wioSntpEnable	R/W	Enable/disable the port of the SNTP
			server
			0 = port of SNTP server disable
			1 = port of SNTP server enable
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.3.2	wioSntpServer-	R/W	IP address of SNTP server
	Address		Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.3.3	wioSntpClient-	R/W	Interval to pool SNTP manager
	Intervall		Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.3.4	wioSntpClient-	R/W	Timeout to corrupt SNTP answer
	Timeout		Default value: { 2000 }
1.3.6.1.4.1.13576.10.1.40.3.5	wioSntpClient-	R/W	Time offset of 1 hour:
	DayLightSaving		0 = not offset
			1 = offset 1 hour (DayLightSaving)
			Default value: { 0 }

Table 426: WAGO MIB – Sntp Group

16.2.11 Snmp Group

The Snmp group contains information and settings for the controller's SNMP agent.

Table 427: WAGO MIB – Snmp Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.4.1	wioSnmpEnable	R/W	Enable/disable the port of the SNMP
			server
			0 = port of SNMP server disable
			1 = port of SNMP server enable
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.2.1	wioSnmp1-	R/W	Enable/disable first SNMPv1/v2c
	ProtocolEnable		agent
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.2.2	wioSnmp1-	R/W	IP address of first SNMP server
	ManagerIp		Default value: { 'C0A80101'h }
1.3.6.1.4.1.13576.10.1.40.4.2.3	wioSnmp1-	R/W	Community identification string for
	Community		SNMPv1/v2c
			Default value: { "public" }
1.3.6.1.4.1.13576.10.1.40.4.2.4	wioSnmp1Trap-	R/W	Enable/disable SNMPv1 traps to first
	V1enable		SNMP server
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.2.5	wioSnmp1Trap-	R/W	Enable/disable SNMPv2c traps to
	V2enable		first SNMP server
			Default value: { 0 }

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.4.2.6	wioSnmp2-	R/W	Enable/disable first SNMPv1/v2c
	ProtocolEnable		agent
			Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.4.2.7	wioSnmp2-	R/W	IP address of second SNMP server
	ManagerIp		Default value: { '00000000'h }
1.3.6.1.4.1.13576.10.1.40.4.2.8	wioSnmp2-	R/W	Community identification string for
	Community		SNMPv1/v2c
	· ~ • • •		Default value: { "public" }
1.3.6.1.4.1.13576.10.1.40.4.2.9	wioSnmp2Trap-	R/W	Enable/disable SNMPv1 traps to first
	vienable		Default value: (0)
1 2 6 1 4 1 12576 10 1 40 4 2 10	wie Sump 2 Trop	D/W/	Enchle/diachle SNIMD: 20 trong to
1.3.0.1.4.1.13370.10.1.40.4.2.10	WIOShimp21rap-	K/ W	first SNMP server
	v Zenabie		Default value: { 0 }
1 3 6 1 4 1 13576 10 1 40 4 3 1	wioSnmn1User-	R/W/	Enable/disable first SNMPv3 user
1.5.0.1.7.1.15570.10.1.40.4.5.1	Enable	17/ 18	Default value: { 1 }
1 3 6 1 4 1 13576 10 1 40 4 3 2	wioSnmp1-	R/W	Athentication typ for first SNMPv3
	Authentication-		user:
	Тур		0 = no Authentication
			1 = MD5 Authentication
			2 = SHA1 Authentication
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.3.3	wioSnmp1-	R/W	Authentication name for first
	Authentication-		SNMPv3 user
	Name		Default value: { "SecurityName" }
1.3.6.1.4.1.13576.10.1.40.4.3.4	wioSnmp1-	R/W	Authentication key for first SNMPv3
	Authentication-		user Default auchae ("A ath antioption K and
	Key		
1 3 6 1 4 1 13576 10 1 40 4 3 5	wioSnmp1-	R/W	J Disable/enable data encryption for
1.5.0.1.4.1.15570.10.1.40.4.5.5	PrivacyEnable	IC/ VV	first SNMPv3 user.
	1111409214010		0 = no Encryption
			1 = DES Encryption
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.3.6	wioSnmp1-	R/W	Privacy key for SNMPv3 for first
	PrivacyKey		SNMPv3 user
			Default value: { "PrivacyKey" }
1.3.6.1.4.1.13576.10.1.40.4.3.7	wioSnmp1-	R/W	Enable/disable notification
	Notification-		(SNMPv3 traps) with SNMPv3 user
		D/117	Detault value: { 1 }
1.3.6.1.4.1.135/6.10.1.40.4.3.8	wioSnmp1-	K/W	(SNIMDy2 trans) with SNIMDy2 user
	ReceiverIP		Default value: $\int COA 80101$ h \Im
1 3 6 1 4 1 13576 10 1 40 4 3 9	wioSnmp2User	R/W/	Enable/disable second SNMDy2 user
1.5.0.1.4.1.15570.10.1.40.4.5.9	Enable	IX/ VV	Default value: { 0 }
1 3 6 1 4 1 13576 10 1 40 4 3 10	wioSpmp2-	R/W	Authentication typ for second
1.5.0.1.1.1.15570.10.1.40.4.5.10	Authentication-	TC/ 44	SNMPv3 user:
	Тур		0 = no authentication
	~ 1		1 = MD5 authentication
			2 = SHA1 authentication
			Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.3.11	wioSnmp2-	R/W	Authentication name for second
	Authentication-		SNMPv3 user
	Name		Default value: { "SecurityName" }

Table 427: WAGO MIB – Snmp Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.4.3.12	wioSnmp2- Authentication- Key	R/W	Authentication key for second SNMPv3 user Default value: {"AuthenticationKey"}
1.3.6.1.4.1.13576.10.1.40.4.3.13	wioSnmp2- PrivacyEnable	R/W	Privacy key for SNMPv3 for second SNMPv3 user Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.4.3.14	wioSnmp2- PrivacyKey	R/W	Privacy key for SNMPv3 for second SNMPv3 user Default value: { "PrivacyKey" }
1.3.6.1.4.1.13576.10.1.40.4.3.15	wioSnmp2- Notification- Enable	R/W	Enable/disable notification (SNMPv3 traps) with SNMPv3 user Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.4.3.16	wioSnmp2- Notification- ReceiverIP	R/W	Receiver IP address for notification (SNMPv3 traps) with SNMPv3 user Default value: { '00000000'h }

Table 427: WAGO MIB - Snmp Group

16.2.12 Snmp Trap String Group

The Snmp trap string group contains strings that are attached to the manufacturer-specific traps.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.4.4.1	wioTrapKbus- Error	R/W	String for 1st SNMP trap Default value: { "Kbus Error" }
1.3.6.1.4.1.13576.10.1.40.4.4.2	wioTrapPlcStart	R/W	String for 2nd SNMP trap Default value: { "Plc Start" }
1.3.6.1.4.1.13576.10.1.40.4.4.3	wioTrapPlcStop	R/W	String for 3rd SNMP trap Default value: { "Plc Stop" }
1.3.6.1.4.1.13576.10.1.40.4.4.4	wioTrapPlc- Reset	R/W	String for 4th SNMP trap Default value: { "Plc Reset" }
1.3.6.1.4.1.13576.10.1.40.4.4.5	wioTrapPlcSoft wareWatchdog	R/W	String for 5th SNMP trap Default value: { "Plc Software Watchdog" }
1.3.6.1.4.1.13576.10.1.40.4.4.6	wioTrapPlc- DivideByZero	R/W	String for 6th SNMP trap Default value: {"Plc Divide By Zero"}
1.3.6.1.4.1.13576.10.1.40.4.4.7	wioTrapPlc- OnlineChange	R/W	String for 7th SNMP trap Default value: {"Plc Online Change"}
1.3.6.1.4.1.13576.10.1.40.4.4.8	wioTrapPlc- Download	R/W	String for 8th SNMP trap Default value: { "Plc Download Programm" }
1.3.6.1.4.1.13576.10.1.40.4.4.9	wioTrapPlc- Login	R/W	String for 9th SNMP trap Default value: { "Plc Login" }
1.3.6.1.4.1.13576.10.1.40.4.4.10	wioTrapPlc- Logout	R/W	String for 10th SNMP trap Default value: {"Plc Logout"}

Table 428: WAGO MIB – Snmp Trap String Group

16.2.13 Snmp User Trap String Group

The Snmp user trap string group contains strings that can be attached to userspecific traps. These strings can be changed via SNMP or Wago_SNMP.lib in CoDeSys.

Table 429: WAGO MIB – Snmp User Trap String Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.4.5.1	wioUserTrapMsg1	R/W	String for 1st SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.2	wioUserTrapMsg2	R/W	String for 2nd SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.3	wioUserTrapMsg3	R/W	String for 3rd SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.4	wioUserTrapMsg4	R/W	String for 4th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.5	wioUserTrapMsg5	R/W	String for 5th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.6	wioUserTrapMsg6	R/W	String for 6th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.7	wioUserTrapMsg7	R/W	String for 7th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.8	wioUserTrapMsg8	R/W	String for 8th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.9	wioUserTrapMsg9	R/W	String for 9th SNMP trap
1.3.6.1.4.1.13576.10.1.40.4.5.10	wioUserTrapMsg10	R/W	String for 10th SNMP trap

16.2.14 Plc Connection Group

Activate or deactivate the connection to CoDeSys with the Plc connection group.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.5.1	wioCoDeSysEnable	R/W	Enable/disable the port of the CoDeSys server 0 = port of CoDeSys server disable 1 = port of CoDeSys server enable Default value: { 1 }

Table 430: WAGO MIB – Plc Connection Group

16.2.15 Modbus Group

The Modbus group contains information and settings about the controller's modbus server.

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.6.1	wioModbusTcp- Enable	R/W	Enable/disable the port of the Modbus TCP server 0 = port of Modbus TCP server disable 1 = port of Modbus TCP server enable Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.6.2	wioModbusUdb- Enable	R/W	Enable/disable the port of the Modbus UDP server 0 = port of Modbus UDP server disable 1 = port of Modbus UDP server enable Default value: { 1 }
1.3.6.1.4.1.13576.10.1.40.6.3	wioMax- Connections	R/W	The maximal count of modbus connections Default value: { 15 }
1.3.6.1.4.1.13576.10.1.40.6.4	wioConnection- Timeout	R/W	Timeout of the modbus connection Default value: { 600 }
1.3.6.1.4.1.13576.10.1.40.6.5	wioModbus- WatchdogMode	R/W	Mode of the modbus watchdog Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.6.6	wioModbus- WatchdogTime	R/W	Timeout of the modbus watchdog Default value: { 100 }
1.3.6.1.4.1.13576.10.1.40.6.7	wioFreeModbus- Sockets	R/W	Unused and free modbus connections Default value: { 15 }
1.3.6.1.4.1.13576.10.1.40.6.8	wioModbus- ConnectionTable	-	
1.3.6.1.4.1.13576.10.1.40.6.8.1	wioModbus- ConnectionEntry	-	
1.3.6.1.4.1.13576.10.1.40.6.8.1.1	wioModbus- ConnectionIndex	R/W	Index of modbus connection
1.3.6.1.4.1.13576.10.1.40.6.8.1.2	wioModbus- ConnectionIp	R/W	IP address of modbus connection
1.3.6.1.4.1.13576.10.1.40.6.8.1.3	wioModbus- ConnectionPort	R/W	Port of modbus connection

Table 431: WAGO MIB – Modbus Group

16.2.16 Ethernet IP Group

The Ethernet IP group contains information and settings for the controller's Ethernet IP.

Table 432: WAGO MIB - Eth	ernet IP Group		
Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.40.7.1	wioEthernetIpEnable	R/W	Enable/disable the port of the Ethernet IP server 0 = port of Ethernet IP server disable 1 = port of Ethernet IP server enable Default value: { 0 }
1.3.6.1.4.1.13576.10.1.40.7.2	wioEthernetIpVariables- InputCount	R/W	
1.3.6.1.4.1.13576.10.1.40.7.3	wioEthernetIpVariables- OutputCount	R/W	
1.3.6.1.4.1.13576.10.1.40.7.4	wioEthernetIpVariables- PlcInputCount	R/W	
1.3.6.1.4.1.13576.10.1.40.7.5	wioEthernetIpVariables- PlcInputOffset	R/W	
1.3.6.1.4.1.13576.10.1.40.7.6	wioEthernetIpVariables- PlcOutputCount	R/W	
1.3.6.1.4.1.13576.10.1.40.7.7	wioEthernetIpVariables- PlcOutputOffset	R/W	
1.3.6.1.4.1.13576.10.1.40.7.8	wioEthernetIpRunIdle- HeaderOrginatorToTarget	R/W	
1.3.6.1.4.1.13576.10.1.40.7.9	wioEthernetIpRunIdle- HeaderTargetToOrginator	R/W	

16.2.17 Process Image Group

The process image group contains a list of information about the terminals connected to the controller.

1 able 455. WAGO MID = 11000	ass mage oroup		
Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.50.1	wioModulCount	R	Count of modules
1.3.6.1.4.1.13576.10.1.50.2	wioAnalogOutLength	R	Length of analog output process datas
1.3.6.1.4.1.13576.10.1.50.3	wioAnalogInLength	R	Length of analog input process datas
1.3.6.1.4.1.13576.10.1.50.4	wioDigitalOutLength	R	Length of digital output process datas
1.3.6.1.4.1.13576.10.1.50.5	wioDigitalInLength	R	Length of digital input process datas
1.3.6.1.4.1.13576.10.1.50.6	wioDigitalOutOffset	R	Offset of digital output process datas
1.3.6.1.4.1.13576.10.1.50.7	wioDigitalInOffset	R	Offset of digital input process datas
1.3.6.1.4.1.13576.10.1.50.8	wioModuleTable	-	
1.3.6.1.4.1.13576.10.1.50.8.1	wioModuleEntry	-	
1.3.6.1.4.1.13576.10.1.50.8.1.1	wioModuleNumber	R	Number of module slot
1.3.6.1.4.1.13576.10.1.50.8.1.2	wioModuleName	R	Name of module

Table 433: WAGO MIB – Process Image Group

Tuble +55. W/100 MID 11000	35 mage Group		
Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.50.8.1.3	wioModuleType	R	Type of module
1.3.6.1.4.1.13576.10.1.50.8.1.4	wioModuleCount	R	Count of module
1.3.6.1.4.1.13576.10.1.50.8.1.5	wioModule- AlternativeFormat	R	Module in alternative format
1.3.6.1.4.1.13576.10.1.50.8.1.6	wioModuleAnalog- OutLength	R	Length of analog output data of module (Bit)
1.3.6.1.4.1.13576.10.1.50.8.1.7	wioModuleAnalog- InLength	R	Length of analog input data of module (Bit)
1.3.6.1.4.1.13576.10.1.50.8.1.8	wioModuleDigital- OutLength	R	Length of digital output data of module (Bit)
1.3.6.1.4.1.13576.10.1.50.8.1.9	wioModuleDigital- InLength	R	Length of digital input data of module (Bit)

Table 433: WAGO MIB – Process Image Group

16.2.18 Plc Data Group

The Plc data group contains values that can be used for data exchange with CoDeSys.

Table 434: WAGO MIB – Pic Data Group

Identifier	Entry	Access	Description
1.3.6.1.4.1.13576.10.1.100.1	wioPlcDataTable	-	
1.3.6.1.4.1.13576.10.1.100.1.1	wioPlcDataEntry	-	
1.3.6.1.4.1.13576.10.1.100.1.1.1	wioPlcDataIndex	R/W	Number of plc data DWORD
1.3.6.1.4.1.13576.10.1.100.1.1.2	wioPlcDataReadArea	R/W	Readable plc data (DWORD)
1.3.6.1.4.1.13576.10.1.100.1.1.3	wioPlcDataWriteArea	R	Write-/readable plc data DWORD)

List of Figures

Figure 1: Fieldbus node	. 21
Figure 2: Example of a manufacturing number	. 22
Figure 3: Isolation for Standard Couplers/Controllers and extended ECO Coupl	ers
	. 24
Figure 4: System supply for standard coupler/controller and extended ECO	
couplers	. 25
Figure 5: System voltage for standard couplers/controllers and extended ECO	
couplers	. 26
Figure 6: Field supply (sensor/actuator) for standard couplers/controllers and	
extended ECO couplers	. 29
Figure 7: Supply module with fuse carrier (Example 750-610)	. 31
Figure 8: Removing the fuse carrier	. 31
Figure 9: Opening the fuse carrier	. 32
Figure 10: Change fuse	. 32
Figure 11: Fuse modules for automotive fuses, series 282	. 33
Figure 12: Fuse modules for automotive fuses, series 2006	. 33
Figure 13: Fuse modules with pivotable fuse carrier, series 281	. 33
Figure 14: Fuse modules with pivotable fuse carrier, series 2002	. 33
Figure 15: Power supply concept	. 34
Figure 16: Supply example for standard couplers/controllers and extended ECC)
couplers	. 36
Figure 17: Carrier rail contact	. 39
Figure 18: Ring-feeding	. 40
Figure 19: Example of the WAGO shield connecting system	. 42
Figure 20: Application of the WAGO shield connecting system	. 42
Figure 21: View ETHERNET TCP/IP Fieldbus Controller	. 46
Figure 22: Device Supply	. 48
Figure 23: RJ-45-Connector	. 49
Figure 24: Display Elements	. 50
Fig. 25: Service interface for programming and configuration (closed and open	
door)	.51
Figure 26: Mode selector switch (closed and open damper of the service port).	52
Figure 27: Address Selection Switch	. 54
Figure 28: Spacing	63
Figure 29: Unlocking lug of extended ECO coupler.	. 66
Figure 30. Insert I/O module	67
Figure 31. Snap the I/O module into place	67
Figure 32: Removing the I/O module	68
Figure 33: Data contacts	69
Figure 34: Example for the arrangement of power contacts	70
Figure 35: Connecting a conductor to a CAGE CLAMP ^{\mathbb{R}}	71
Figure 36: Run-un of the Controller	73
Figure 37. Example of process image for input data	76
Figure 38: Example of process image for output data	77
Figure 39: Memory areas and data exchange	81
Figure 40: Example declaration of remanent flags by var retain"	83
Figure 41: WAGO I/O Configurator	84
Figure 42: Data exchange between MODRUS Master and I/O modules	92
i gare 12. Dua exchange between mobiles muster and no modules	. , 4

Figure 43: Data exchange between PLC function (CPU) of the PFC and the I/0	Э 04
Figure 44: Example of addressing for a fieldbus node	94
Figure 44. Example of addressing for a fieldous field us	101
Figure 46: WBM page "Port"	104
Figure 47: WBM page "Information"	109
Figure 48: WBM page "Port"	110
Figure 49. Example for the Function test of a Fieldbus Node	112
Figure 50: Example of real-time clock synchronization in ETHERNET Setting	2S
	. 116
Figure 51: Dialog window for target system settings	. 119
Figure 52: Write access via module parameters	. 123
Figure 53: EA-config.xml	. 124
Figure 54: Watchdog runtime is less than the task runtime	. 132
Figure 55: Watchdog runtime is greater than the task call interval	. 132
Figure 56: System events	. 135
Figure 57: Dialog window "Communication parameters"	. 139
Figure 58: WBM page "Information"	. 144
Figure 59: WBM-Seite "Ethernet"	. 146
Figure 60: WBM page "TCP/IP"	. 149
Figure 61: WBM page "Port"	. 151
Figure 62: WBM page "SNMP"	. 154
Figure 63: WBM page "SNMP V3"	. 156
Figure 64: WBM page "Watchdog"	. 158
Figure 65: WBM page "Clock"	. 161
Figure 66: WBM page "Security"	. 163
Fugure 67: WBM page "PLC Info"	. 165
Figure 68: WBM page "PLC"	. 166
Figure 69: WBM page "Features"	. 169
Figure 70: WBM page "I/O Config"	. 170
Figure 71: WBM page "WebVisu"	. 173
Figure 72: Display Elements	. 174
Figure 73: Node status - I/O LED signaling	. 177
Figure 74: Error message coding.	. 177
Figure 75: Function block for determining loss of fieldbus, independently of	105
protocol	. 185
Figure 76: Use of the MODBUS Functions	. 207
Figure //: Example SCADA software with MODBUS driver	. 354
Figure /8: Side marking example for ATEX and IEC Ex approved I/O module	es es
according to CENELEC and IEC	. 336
Figure 79: Printing Text detail – Marking example for ATEX and IEC Ex	250
Eigen 20. Side membres according to CENELEC and IEC.	. 330
right out side marking example for Ex 1 and IEC Ex 1 approved I/O modules	; 257
Figure 81: Taxt detail Marking assemble for Ex i and IEC Ex i approved 1/0	. 331
modules according to CENELEC and IEC	357
Figure 82: Side marking example for I/O modules according to NEC 500	350
Figure 82: Text detail - Marking example for I/O modules according to NEC 500	500
righte 65. Text detail – Marking example for 1/O modules according to NEC.	350
	,

List of Tables

Table 1: Number Notation	. 15
Table 2: Font Conventions	. 15
Table 3: Alignment	. 26
Table 4: Power supply modules	. 30
Table 5: Filter modules for 24-volt supply	. 34
Table 6: WAGO Power Supply Unit	. 37
Table 7: WAGO ground wire terminals	. 38
Table 8: Compatibility	. 45
Table 9: Legend to the View ETHERNET TCP/IP Fieldbus Controller	. 47
Table 10: RJ-45 Connector and RJ-45 Connector Configuration	. 49
Table 11: Display Elements Fieldbus Status	. 50
Table 12: Display Elements Node Status	. 50
Table 13: Display Elements Supply Voltage	. 50
Table 14: Service port	. 51
Table 15: Mode selector switch	. 52
Table 16: Meaning of DIP switch positions	. 54
Table 17: Technical data – Device data	. 55
Table 18: Technical data – System data	. 55
Table 19: Technical data – Supply	. 56
Table 20: Technical data – Fieldbus MODBUS/TCP	. 56
Table 21: Technical data – Accessories	. 56
Table 22: Technical Data Wire Connection	. 56
Table 23: Technical Data - Climatic environmental conditions	. 57
Table 24: Technical data – Mechanical strength	. 57
Table 25: WAGO DIN Rail	. 63
Table 26: Data with for I/O modules	. 85
Table 27: Breakdown of address range	. 86
Table 28: Address range Word 0255	. 86
Table 29: Address range, word 256 – 511	. 86
Table 30: Address range, word 512 - 1275	. 87
Table 31: Address range, word 12761531	. 87
Table 32: Address range for flags	. 87
Table 33: IEC-61131-3 address areas	. 88
Table 34: Absolute Addressing	. 89
Table 35: Addressing example	. 89
Table 36: Allocation of digital inputs and outputs to process data words in	
accordance with the	. 91
Table 37: ETHERNET libraries for WAGO-I/O-PRO	126
Table 38: Task processing	133
Table 39: WBM page "Information"	145
Table 40: WBM page "Ethernet"	147
Table 41: WBM page "TCP/IP"	150
Table 42: WBM page "Port"	152
Table 43: WBM page "SNMP"	155
Table 44: WBM page "Watchdog"	159
Table 45: WBM page "Clock"	161
Table 46: WBM page "Security"	164

Table 47. WDM mass. DLC Info"	165
Table 47. WBM page "DL C"	103
Table 40: WDM page "Easturge"	10/
Table 50: WPM page "I/O configuration"	109
Table 50. W Divi page 1/0 configuration	174
Table 51. LED assignment for diagnostics	1/4
Table 52. Fieldous diagnostics – solution in event of error	175
Table 54: Blink code, table for the I/O I ED signaling, error code 1	. 170
Table 55: Blink code table for the I/O I ED signaling, error code 2	170
Table 56: Blink code table for the I/O LED signaling, error code 3	180
Table 50. Blink code table for the I/O LED signaling, error code 4	100
Table 57. Blink code table for the I/O LED signaling, error code 5	101
Table 50: Blink code, table for the I/O LED signaling, error code 6	182
Table 60: Plink code table for the 'I/O' I ED signaling, error code 7 0	102
Table 61: Blink code table for the 'I/O' LED signaling, error code 10	182
Table 61: Blink code table for the 'I/O' LED signaling, error code 11	105
Table 62. Blink code table for the 1/0 LED signalling, effor code 11	105
Table 63. Fower suppry status diagnostics – solution in event of error	104
Table 65: Naturally Class A	100
Table 65. Network Class A	109
Table 67: Network Class D	109
Table 67. Network Class C	100
Table 60: Class P Address with Field for Subnot IDs	190
Table 09. Class D Address with Field for Subject IDS	101
Table 70. Subject mask for Class A lietwork	101
Table 71: Subnet mask for Class D network	191
Table 72: Subject mask for Class C lietwork	101
Table 75. Example for all IF address from a Class D lietwork	191
Table 75: Magning of DHCD options	100
Table 75: Meaning of the SNTP Deremeters	100
Table 70. MIB II groups	199 201
Table 77: Standard Trans	201
Table 70: MODBUS/TCP header	202
Table 80: Basic data types of MODBUS protocol	204
Table 81: List of the MODBUS functions in the fieldbus controller	205
Table 81: Exception Codes	200
Table 82: Request of Function code EC1	200
Table 84: Response of Function code FC1	209
Table 85: Assignment of inputs	209
Table 86: Exception of Eulerion code EC1	209
Table 87: Request of Function code FC2	210
Table 88: Response of Function code EC2	211
Table 80: Assignment of inputs	211
Table 90: Exception of Function code EC2	211
Table 91: Request of Function code FC3	212
Table 92: Response of Function code EC3	213
Table 93: Exception of Function code FC3	213
Table 94: Request of Function code EC4	213 714
Table 95: Response of Function code FC4	214 211
Table 96: Exception of Eulerion code EC4	214 211
rable 50. Exception of Function code FC4	414

Table 98: Response of Function code FC5. 215 Table 99: Exception of Function code FC6. 216 Table 101: Request of Function code FC6. 216 Table 102: Exception of Function code FC6. 216 Table 103: Request of Function code FC11 217 Table 104: Response of Function code FC11 217 Table 105: Exception of Function code FC15 218 Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC16 220 Table 108: Exception of Function code FC16 220 Table 109: Request of Function code FC16 220 Table 111: Exception of Function code FC22 221 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC23 222 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access writing (with FC3 FC4 and FC23) 224 Table 119: Register access writing (with FC3 and FC15) 226 Table 120: MODBUS registers 270 Table	Table 97: Request of Function code FC5	215
Table 99: Exception of Function code FC5. 215 Table 100: Request of Function code FC6. 216 Table 101: Response of Function code FC6. 216 Table 102: Exception of Function code FC1 217 Table 103: Request of Function code FC1 217 Table 104: Response of Function code FC1 217 Table 105: Exception of Function code FC15 218 Table 107: Response of Function code FC15 218 Table 108: Exception of Function code FC16 220 Table 109: Request of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC22 221 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC23 222 Table 114: Exception of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access variing (with FC3, FC4 and FC23) 222 Table 119: Register access variing (with FC4, FC16, FC22 and FC23) 222 Table 119: Register access variing (with FC5 and FC15) 226 Table 119: Register access variing (with FC4, FC16, FC22 and FC23) 225 Table 120: Bit access variing (with	Table 98: Response of Function code FC5	.215
Table 100: Request of Function code FC6. 216 Table 101: Response of Function code FC6. 216 Table 103: Request of Function code FC11 217 Table 104: Response of Function code FC11 217 Table 105: Exception of Function code FC1 217 Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC15 218 Table 108: Exception of Function code FC16 220 Table 108: Request of Function code FC16 220 Table 111: Exception of Function code FC26 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 115: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access vraing (with FC3, FC4 and FC23) 224 Table 120: Bit access vraing (with FC1 and FC2) 226 Table 121: Bit access writing (with FC1 and FC2) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table	Table 99: Exception of Function code FC5.	.215
Table 101: Response of Function code FC6 216 Table 102: Exception of Function code FC1 217 Table 103: Request of Function code FC11 217 Table 105: Exception of Function code FC15 218 Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC15 218 Table 108: Exception of Function code FC16 220 Table 109: Request of Function code FC16 220 Table 111: Response of Function code FC21 221 Table 112: Request of Function code FC26 220 Table 112: Request of Function code FC21 221 Table 112: Request of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Request of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access reading (with FC4, FC16, FC22 and FC23) 224 Table 119: Register access writing (with FC5, FC16, FC22 and FC23) 225 Table 120: Bit access writing (with FC5 and FC15) 226 Table 121: Bit access writing (with FC5, FC16	Table 100: Request of Function code FC6	216
Table 102: Exception of Function code FC6. 216 Table 104: Response of Function code FC11 217 Table 105: Exception of Function code FC11 217 Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC15 219 Table 109: Request of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 112: Request of Function code FC16 220 Table 113: Response of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC3) 224 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access reading (with FC1 and FC1) 228 Table 122: MODBUS registers (Continuation) 228 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1002 230	Table 101: Response of Function code FC6	216
Table 103: Request of Function code FC11 217 Table 104: Response of Function code FC11 217 Table 105: Exception of Function code FC15 218 Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC16 220 Table 108: Exception of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC22 221 Table 115: Request of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC3 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access reading (with FC4, FC16, FC22 and FC23) 225 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229	Table 102: Exception of Function code FC6	216
Table 104: Response of Function code FC11 217 Table 105: Exception of Function code FC15 218 Table 107: Response of Function code FC15 218 Table 109: Request of Function code FC16 219 Table 109: Response of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC22 221 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC5, FC4 and FC23) 224 Table 119: Register access reading (with FC5 and FC15) 226 Table 120: Bit access reading (with FC5 and FC15) 226 Table 123: MODBUS registers 227 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1004 230 Tabl	Table 103: Request of Function code FC11	. 217
Table 105: Exception of Function code FC 11. 217 Table 106: Request of Function code FC15 218 Table 108: Exception of Function code FC16 219 Table 109: Request of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC5, FC16, FC22 and FC23) 224 Table 120: Bit access reading (with FC5 and FC15) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers (Continuation) 228 Table 125: Register address 0x1000 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 231 Table 130:	Table 104: Response of Function code FC11	. 217
Table 106: Request of Function code FC15 218 Table 107: Response of Function code FC15 219 Table 109: Request of Function code FC16 220 Table 109: Request of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 111: Exception of Function code FC26 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access reading (with FC5 and FC15) 226 Table 120: Bit access reading (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 231 Table 129: Register address 0x1005 230 Table 129: Register address 0x1005 230 Table 129: Register address 0x1004 </td <td>Table 105: Exception of Function code FC 11</td> <td>. 217</td>	Table 105: Exception of Function code FC 11	. 217
Table 107: Response of Function code FC15 218 Table 108: Exception of Function code FC15 219 Table 110: Response of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 131: Register address 0x1002 230 Table 132: Register address 0x1004 230 Table 132: Register address 0x1005 230 Table 133: Register address 0x1006 231 Table 131: Register address 0x1007	Table 106: Request of Function code FC15	218
Table 108: Exception of Function code FC15. 219 Table 109: Request of Function code FC16. 220 Table 111: Exception of Function code FC16. 220 Table 111: Exception of Function code FC22. 221 Table 112: Request of Function code FC22. 221 Table 114: Exception of Function code FC23. 222 Table 115: Request of Function code FC23. 222 Table 116: Response of Function code FC23. 222 Table 117: Exception of Function code FC23. 222 Table 118: Register access reading (with FC3, FC4 and FC23). 224 Table 119: Register access reading (with FC3, FC4 and FC23). 226 Table 120: Bit access reading (with FC5 and FC15). 226 Table 120: Bit access writing (with FC5 and FC15). 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation). 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1003 230 Table 127: Register address 0x1004 230 Table 131: Register address 0x1005 231 Table 132: Register address 0x1004 231 Table 1	Table 107: Response of Function code FC15	.218
Table 109: Request of Function code FC16 220 Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC12 221 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 117: Bat access reading (with FC3, FC4 and FC23) 224 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC3 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1003 230 Table 126: Register address 0x1005 230 Table 131: Register ad	Table 108: Exception of Function code FC15	.219
Table 110: Response of Function code FC16 220 Table 111: Exception of Function code FC16 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 114: Exception of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 222 Table 120: Bit access reading (with FC4, FC16, FC22 and FC23) 225 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 130: Register address 0x1004 230 Table 131: Register address 0x1005 230 Table 131: Register address 0x1006 231 Table 132: Register address 0x1007 231 Table 133: Register address 0x1008 231 Table 131: Register address 0x1004 <	Table 109: Request of Function code FC16	. 220
Table 111: Exception of Function code FC16. 220 Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access writing (with FC5, FC16, FC22 and FC23) 225 Table 120: Bit access reading (with FC5 and FC15) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers (Continuation) 228 Table 123: Register address 0x1000 229 Table 124: Register address 0x1001 229 Table 125: Register address 0x1002 230 Table 129: Register address 0x1003 230 Table 129: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1006 231 Table 131: Register address 0x1008 231 Table 131: Register a	Table 110: Response of Function code FC16	. 220
Table 112: Request of Function code FC22 221 Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 222 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 120: Bit access reading (with FC3, FC4 and FC23) 224 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1002 230 Table 126: Register address 0x1003 230 Table 127: Register address 0x1004 230 Table 130: Register address 0x1005 230 Table 131: Register address 0x1006	Table 111: Exception of Function code FC16	. 220
Table 113: Response of Function code FC22 221 Table 114: Exception of Function code FC23 221 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 130: Register address 0x1005 230 Table 131: Register address 0x1006 231 Table 132: Register address 0x1008 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1008 231 Table 134: Register address 0x1008 231	Table 112: Request of Function code FC22	. 221
Table 114: Exception of Function code FC22 221 Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access reading (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 129: Register address 0x1003 230 Table 129: Register address 0x1004 230 Table 131: Register address 0x1006 231 Table 132: Register address 0x1007 231 Table 133: Register address 0x1008 231 Table 133: Register address 0x1008 231 Table 135: Starting Watchdog 232 Table 139: Register address 0x100A 231 Table 139: Register address 0x102 235 Table 131: Register address 0x102 232 Tab	Table 113: Response of Function code FC22	. 221
Table 115: Request of Function code FC23 222 Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access writing (with FC6, FC16, FC22 and FC23) 225 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1004 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 133: Register address 0x1008 232 Table 137: Register address 0x1002 234 Table 137: Register address 0x1020 234	Table 114: Exception of Function code FC22	. 221
Table 116: Response of Function code FC23 222 Table 117: Exception of Function code FC23 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access writing (with FC6, FC16, FC22 and FC23) 225 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1003 230 Table 127: Register address 0x1004 230 Table 128: Register address 0x1005 230 Table 129: Register address 0x1006 231 Table 130: Register address 0x1006 231 Table 131: Register address 0x1006 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 233 Table 136: Register address 0x1020 234 Table 137: Register address 0x1020 234	Table 115: Request of Function code FC23	. 222
Table 117: Exception of Function code FC23. 222 Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access writing (with FC6, FC16, FC22 and FC23) 225 Table 120: Bit access vriting (with FC5 and FC15) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x100A 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x100A 234 Table 136: Register address 0x100A 234 Table 137: Register address 0x1020 234 <tr< td=""><td>Table 116: Response of Function code FC23</td><td>. 222</td></tr<>	Table 116: Response of Function code FC23	. 222
Table 118: Register access reading (with FC3, FC4 and FC23) 224 Table 119: Register access writing (with FC6, FC16, FC22 and FC23) 225 Table 120: Bit access reading (with FC1 and FC2) 226 Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1008 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 231 Table 137: Register address 0x1020 234 Table 136: Register address 0x1020 234 Table 137: Register address 0x1021 234 <t< td=""><td>Table 117: Exception of Function code FC23</td><td>. 222</td></t<>	Table 117: Exception of Function code FC23	. 222
Table 119: Register access writing (with FC6, FC16, FC22 and FC23).225Table 120: Bit access reading (with FC1 and FC2)226Table 121: Bit access writing (with FC5 and FC15)226Table 122: MODBUS registers227Table 123: MODBUS registers (Continuation)228Table 124: Register address $0x1000$ 229Table 125: Register address $0x1001$ 229Table 126: Register address $0x1002$ 230Table 127: Register address $0x1002$ 230Table 128: Register address $0x1003$ 230Table 129: Register address $0x1004$ 230Table 129: Register address $0x1005$ 230Table 130: Register address $0x1005$ 230Table 131: Register address $0x1006$ 231Table 132: Register address $0x1006$ 231Table 133: Register address $0x1008$ 231Table 134: Register address $0x1008$ 231Table 135: Starting Watchdog232Table 136: Register address $0x1008$ 233Table 137: Register address $0x1008$ 231Table 138: Register address $0x1008$ 231Table 139: Register address $0x1008$ 232Table 139: Register address $0x1008$ 233Table 139: Register address $0x1008$ 234Table 139: Register address $0x1008$ 235Table 139: Register address $0x1020$ 234Table 139: Register address $0x1021$ 234Table 139: Register address $0x1023$ 235Table 141: Register address $0x1024$ 235Table 142: Register address $0x1024$ 235Tabl	Table 118: Register access reading (with FC3, FC4 and FC23)	. 224
Table 120: Bit access reading (with FC1 and FC2)226Table 121: Bit access writing (with FC5 and FC15)226Table 122: MODBUS registers227Table 123: MODBUS registers (Continuation)228Table 124: Register address $0x1000$ 229Table 125: Register address $0x1001$ 229Table 126: Register address $0x1002$ 230Table 127: Register address $0x1002$ 230Table 128: Register address $0x1003$ 230Table 129: Register address $0x1003$ 230Table 129: Register address $0x1004$ 230Table 129: Register address $0x1005$ 230Table 130: Register address $0x1005$ 230Table 131: Register address $0x1006$ 231Table 132: Register address $0x1006$ 231Table 133: Register address $0x1006$ 231Table 133: Register address $0x1008$ 231Table 134: Register address $0x1008$ 231Table 135: Starting Watchdog232Table 136: Register address $0x1008$ 233Table 137: Register address $0x1008$ 233Table 138: Register address $0x1008$ 233Table 139: Register address $0x1020$ 234Table 139: Register address $0x1021$ 235Table 139: Register address $0x1023$ 235Table 141: Register address $0x1024$ 235Table 142: Register address $0x1024$ 235Table 143: Register address $0x1024$ 235Table 144: Register address $0x1024$ 235Table 144: Register address $0x1024$ 235Table 144: Register address $0x1024$	Table 119: Register access writing (with FC6, FC16, FC22 and FC23)	. 225
Table 121: Bit access writing (with FC5 and FC15) 226 Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 233 Table 137: Register address 0x1008 233 Table 137: Register address 0x1008 232 Table 137: Register address 0x1008 232 Table 138: Register address 0x1020 234 Table 137: Register address 0x1020 234 Table 138: Register address 0x1023 235 Table 139: Register address 0x1024 235	Table 120: Bit access reading (with FC1 and FC2)	. 226
Table 122: MODBUS registers 227 Table 123: MODBUS registers (Continuation) 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1004 230 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 231 Table 137: Register address 0x1008 231 Table 136: Register address 0x1004 231 Table 137: Register address 0x1004 231 Table 137: Register address 0x1004 231 Table 137: Register address 0x1004 231 Table 138: Register address 0x1020 234 Table 137: Register address 0x1021 234 Table 138: Register address 0x1022 235	Table 121: Bit access writing (with FC5 and FC15)	. 226
Table 123: MODBUS registers (Continuation). 228 Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1006 231 Table 132: Register address 0x1007 231 Table 133: Register address 0x1008 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog. 232 Table 136: Register address 0x1008 233 Table 137: Register address 0x1008 233 Table 138: Register address 0x1008 233 Table 139: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1023 235 Table 140: Register address 0x1024 235 Table 141: Register address 0x1025 235 Table 142: Register address 0x1024 235 <t< td=""><td>Table 122: MODBUS registers</td><td>. 227</td></t<>	Table 122: MODBUS registers	. 227
Table 124: Register address 0x1000 229 Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1008 231 Table 134: Register address 0x1008 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100A 231 Table 137: Register address 0x100B 233 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1023 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1024 235 Table 144: Register address 0x1028 235 <	Table 123: MODBUS registers (Continuation)	. 228
Table 125: Register address 0x1001 229 Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1005 230 Table 131: Register address 0x1006 231 Table 132: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 233 Table 137: Register address 0x1008 233 Table 138: Register address 0x1008 233 Table 137: Register address 0x1008 233 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1023 235 Table 140: Register address 0x1024 235 Table 141: Register address 0x1025 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 <	Table 124: Register address 0x1000	. 229
Table 126: Register address 0x1002 230 Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1008 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 233 Table 137: Register address 0x1008 233 Table 138: Register address 0x1008 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x1008 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 143: Register address 0x1028 235 Tab	Table 125: Register address 0x1001	. 229
Table 127: Register address 0x1003 230 Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x100B 233 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1023 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1025 235 Table 142: Register address 0x1028 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x1029 236 Table 146: Register address 0x102A 236	Table 126: Register address 0x1002	.230
Table 128: Register address 0x1004 230 Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x100A 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1020 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 144: Register address 0x1029 236 Table 146: Register address 0x102A 236	Table 127: Register address 0x1003	.230
Table 129: Register address 0x1005 230 Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog. 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x100B 233 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1025 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 128: Register address 0x1004	.230
Table 130: Register address 0x1006 231 Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 132: Register address 0x1009 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x1009 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1025 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 129: Register address 0x1005	.230
Table 131: Register address 0x1007 231 Table 132: Register address 0x1008 231 Table 132: Register address 0x1009 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x100A 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x100B 234 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 130: Register address 0x1006	. 231
Table 132: Register address 0x1008 231 Table 133: Register address 0x1009 231 Table 134: Register address 0x100A 231 Table 135: Starting Watchdog. 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 131: Register address 0x1007	. 231
Table 133: Register address 0x1009 231 Table 134: Register address 0x100A 231 Table 135: Starting Watchdog 232 Table 136: Register address 0x100B 233 Table 137: Register address 0x100B 234 Table 138: Register address 0x1020 234 Table 138: Register address 0x1020 234 Table 139: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 132: Register address 0x1008	.231
Table 134: Register address 0x100A. 231 Table 135: Starting Watchdog. 232 Table 136: Register address 0x100B. 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 133: Register address 0x1009	.231
Table 135: Starting Watchdog. 232 Table 136: Register address 0x100B. 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1028 235 Table 145: Register address 0x1029 236 Table 146: Register address 0x102B 236	Table 134: Register address 0x100A	. 231
Table 136: Register address 0x100B 233 Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1021 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 135: Starting Watchdog	.232
Table 137: Register address 0x1020 234 Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 136: Register address 0x100B	.233
Table 138: Register address 0x1021 234 Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 137: Register address 0x1020	.234
Table 139: Register address 0x1022 235 Table 140: Register address 0x1023 235 Table 141: Register address 0x1024 235 Table 142: Register address 0x1025 235 Table 143: Register address 0x1028 235 Table 144: Register address 0x1029 236 Table 145: Register address 0x102A 236 Table 146: Register address 0x102B 236	Table 138: Register address 0x1021	.234
Table 140: Register address 0x1023235Table 141: Register address 0x1024235Table 142: Register address 0x1025235Table 143: Register address 0x1028235Table 144: Register address 0x1029236Table 145: Register address 0x102A236Table 146: Register address 0x102B236	Table 139: Register address 0x1022	.235
Table 141: Register address 0x1024235Table 142: Register address 0x1025235Table 143: Register address 0x1028235Table 144: Register address 0x1029236Table 145: Register address 0x102A236Table 146: Register address 0x102B236	Table 140: Register address 0x1023	.235
Table 142: Register address 0x1025235Table 143: Register address 0x1028235Table 144: Register address 0x1029236Table 145: Register address 0x102A236Table 146: Register address 0x102B236	Table 141: Register address 0x1024	.235
Table 143: Register address 0x1028235Table 144: Register address 0x1029236Table 145: Register address 0x102A236Table 146: Register address 0x102B236	Table 142: Register address 0x1025	.235
Table 144: Register address 0x1029236Table 145: Register address 0x102A236Table 146: Register address 0x102B236	Table 143: Register address 0x1028	.235
Table 145: Register address 0x102A	Table 144: Register address 0x1029	.236
Table 146: Register address 0x102B. 236	Table 145: Register address 0x102A	236
J	Table 146: Register address 0x102B	.236

Table 147: Register address 0x1030	. 236
Table 148: Register address 0x1031	. 236
Table 149: Register address 0x1050	. 237
Table 150: Register address 0x2030	. 238
Table 151: Register address 0x2031	. 238
Table 152: Register address 0x2032	. 238
Table 153: Register address 0x2033	. 239
Table 154: Register address 0x2040	. 239
Table 155: Register address 0x2041	. 239
Table 156: Register address 0x2042	. 239
Table 157: Register address 0x2043	. 239
Table 158: Register address 0x2010	. 240
Table 159: Register address 0x2011	. 240
Table 160: Register address 0x2012	. 240
Table 161: Register address 0x2013	. 240
Table 162: Register address 0x2014	. 240
Table 163: Register address 0x2020	. 240
Table 164: Register address 0x2021	. 241
Table 165: Register address 0x2022	. 241
Table 166: Register address 0x2023	. 241
Table 167: Register address 0x2000	. 242
Table 168: Register address 0x2001	. 242
Table 169: Register address 0x2002	. 242
Table 170: Register address 0x2003	. 242
Table 171: Register address 0x2004	. 242
Table 172: Register address 0x2005	. 242
Table 173: Register address 0x2006	. 243
Table 174: Register address 0x2007	. 243
Table 175: Register address 0x2008	. 243
Table 176: Register address 0x3000 to 0x5FFF	. 243
Table 177: ISO/OSI reference model	.245
Table 178: CIP common class	248
Table 179: WAGO specific classes	249
Table 180: Explanation of the table headings in the object descriptions	250
Table 181: Identity $(01_{\text{bar}}) - \text{Class}$	250
Table 182: Identity (01 her) – Instance 1	251
Table 183. Identity (01 her) – Common service	251
Table 184: Message router $(02_{\text{hev}}) - \text{Class}$	252
Table 185: Message router (02_{hex}) – Instance 1	252
Table 186: Message router (02_{hex}) – Common service	253
Table 187: Assembly $(04 \text{ hor}) - \text{Class}$	253
Table 188: Overview of static Assembly instances	253
Table 189: Static assembly instances – Instance 101 (65 μ_{rr})	254
Table 190. Static assembly instances – Instance 107 (66_{her})	254
Table 191: Static assembly instances – Instance 102 (00 nex).	254
Table 192: Static assembly instances – Instance 104 (68 μ)	254
Table 193: Static assembly instances – Instance $105 (69, 1)$	255
Table 194: Static assembly instances – Instance 106 ($6A_{\pm}$)	255
Table 195: Static assembly instances – Instance 100 (OT_{hex}).	255
Table 196: Static assembly instances – Instance $107 (00 hex)$	255
rubic 196. State assentory instances instance 106 (0C hex)	. 200

Table 197: Static assembly instances – Instance 109 (6C hex)	256
Table 198: Static assembly instances – Instance 110 (6E hex)	256
Table 199: Static assembly instances – Instance 111 (6F hex)	256
Table 200: Static assembly instances – Common service	257
Table 201: Port class (F4 hex) – Class	258
Table 202: Port class (F4 hex) – Instance 1	258
Table 203: Port class (F4 hex) – Common service	259
Table 204: TCP/IP interface (F5 _{hex}) – Class	260
Table 205: TCP/IP interface (F5 _{hex}) – Instance 1	261
Table 206: TCP/IP interface (F5 _{hex}) – Common service	261
Table 207: Ethernet link (F5 _{hex}) – Class	262
Table 208: Ethernet link (F6 hex) – Instance 1	263
Table 209: Ethernet link (F6 hex) – Instance 2	265
Table 210: Ethernet link $(F6_{hex})$ – Instance 3	267
Table 211: Ethernet link $(F6_{hex})$ – Common service	267
Table 212: Coupler/Controller configuration (64 hex) – Class	268
Table 213: Coupler/Controller configuration (64 hex) – Instance 1	268
Table 214: Coupler/Controller configuration (64 hex) – Common service	270
Table 215: Discrete input point (65 hex) – Class	270
Table 216: Discrete input point (65 hex) – Instance 1255	270
Table 217: Discrete input point (65 hex) – Common service	270
Table 218: Discrete Input Point Extended 1(69 hex.) – Class	271
Table 219: Discrete output point (66 hex) – Instance 256510	271
Table 220: Discrete Input Point Extended 1 (69 hex) – Common service	271
Table 221: Discrete Input Point Extended 2 (6D hex) – Class	271
Table 222: Analog input point (67 hex) – Instance 1	271
Table 223: Analog input point (67_{hex}) – Common service	272
Table 224: Discrete Input Point Extended 3 (71 hex) – Class	272
Table 225: Discrete Input Point Extended 3 (71 hex) – Instance 7661020	272
Table 226: Discrete Input Point Extended 3 (71 $_{hex}$) – Common service	272
Table 227: Discrete Output Point (66 hex) – Class	272
Table 228: Discrete Output Point (66 hex) – Instance 1255	273
Table 229: Discrete Output Point (66 hex) – Common service	273
Table 230: Discrete Output Point Extended 1 (6A hex) – Class	273
Table 231: Discrete Output Point Extended 1 $(6A_{hex})$ – Instance 256510	273
Table 232: Discrete Output Point Extended 1 $(6A_{hex})$ – Common service	273
Table 233: Discrete Output Point Extended 2 (6E hex) – Class	274
Table 234: Discrete Output Point Extended 2 ($6E_{hex}$) – Instance 511765	274
Table 235: Discrete Output Point Extended 2 ($6E_{hex}$) – Common service	274
Table 236: Discrete Output Point Extended 3 (72_{hex}) – Class	274
Table 237: Discrete Output Point Extended 3 (72_{hex}) – Instance 7661020	275
Table 238: Discrete Output Point Extended 2 ($6E_{hex}$) – Common service	275
Table 239: Analog Input Point (67 hex) – Class	275
Table 240: Analog Input Point (67_{hex}) – Instance 1 255	275
Table 241: Analog Input Point (67 hex) – Common service	275
Table 242: Analog Input Point Extended 1 (6B hex) – Class	276
Table 243: Analog Input Point Extended 1 (6B hex) – Instance 256 510	276
Table 244: Analog Input Point Extended 1 (6B hex) – Common service	276
Table 245: Analog Input Point Extended 2 (6F hex) – Class	276
Table 246: Analog Input Point Extended 2 (6F hex) – Instance 511 765	277

Table 247: Analog Input Point Extended 2 (6F hex) – Common service	. 277
Table 248: Analog Input Point Extended 3 (73 hex) – Class	. 277
Table 249: Analog Input Point Extended 3 (73 hex) – Instance 766 1020	. 277
Table 250: Analog Input Point Extended 3 (73 her) – Common service	.278
Table 251: Analog Output Point (68_{\pm}) – Class	278
Table 252: Analog Output Point (69) Instance 1 255	270
Table 252. Analog Output Point (08_{hex}) – instance 1255	. 270
Table 255. Analog Output Point $(08_{hex}) = Continion Service$. 270
Table 254: Analog Output Point Extended 1 (6C $_{hex}$) – Class	. 279
Table 255: Analog Output Point Extended 1 (6C $_{hex}$) – Instance 256510	.279
Table 256: Analog Output Point Extended 1 ($6C_{hex}$) – Common service	. 279
Table 257: Analog Output Point Extended 2 (70 hex) – Class	. 279
Table 258: Analog Output Point Extended 2 (70 hex) – Instance 511765	. 280
Table 259: Analog Output Point Extended 2 (70 hex) – Common service	. 280
Table 260: Analog Output Point Extended 3 (74 hex) – Class	. 280
Table 261: Analog Output Point Extended 3 (74 hex) – Instance 7661020	. 280
Table 262: Analog Output Point Extended 3 (74 her) – Common service	. 281
Table 263: Module Configuration (80 $_{\rm har}$) – Class	281
Table 264: Module Configuration $(80 \pm)$ – Instance 1 255	281
Table 265: Module Configuration $(80 \pm)$ Common service	201
Table 205. Module Configuration $(\delta 0_{hex}) = Continion Service \dots$. 201
Table 260: Module Configuration Extended $(81_{hex}) - Class$. 282
Table 26/: Module Configuration Extended (81_{hex}) – Instance 256	. 282
Table 268: Module Configuration Extended (81_{hex}) – Common service	. 282
Table 269: Input fieldbus variable USINT (A0 hex) – Class	. 283
Table 270: Input fieldbus variable USINT (A0 hex) – Instance 1255	. 283
Table 271: Input fieldbus variable USINT (A0 hex) – Common service	. 283
Table 272: Input Fieldbus Variable USINT Extended 1 (A1 hex) – Class	. 284
Table 273: Input fieldbus variable USINT Extended 1 (A1 hex) – Instance	
256510	. 284
Table 274: Input fieldbus variable USINT Extended 1 (A1 her) – Common ser	vice
$-\mathbf{r} = \mathbf{r} = \mathbf{r}$	284
Table 275: Input Fieldbus Variable USINT Extended $2(\Delta 2_{1})$ – Class	285
Table 276: Input Fieldbus Variable USINT Extended 2 (Λ^2_{nex}) Instance	. 205
$\frac{1}{1} \frac{1}{1} \frac{1}$	285
Table 277. Lengt fieldbug variable USINT Extended 2 (A2) Common ser	. 203
Table 277. Input fieldbus variable USINT Extended 2 (A2 $_{hex}$) – Common ser	vice
	. 285
Table 278: Output fieldbus variable USINT (A3 $_{hex}$) – Class	. 286
Table 279: Output fieldbus variable USINT (A3 hex) – Instance 1255	. 286
Table 280: Output fieldbus variable USINT (A3 hex) – Common service	. 286
Table 281: Output Fieldbus variable USINT Extended 1 (A4 hex) – Class	. 287
Table 282: Output Fieldbus Variable USINT Extended 1 (A4 hex) – Instance	
256510	. 287
Table 283: Output Fieldbus Variable USINT Extended 1 (A4 her) – Common	
service	287
Table 284: Output Fieldbus Variable USINT Extended 2 (A5, $)$ – Class	288
Table 285: Output Fieldbus Variable USINT Extended 2 (Λ_{5}) Instance	. 200
1 able 285. Output Fieldbus Variable OSHVI Extended 2 (AS_{hex}) – instance 511, 512	200
J11J12	. 200
rabelle 280: Output Fieldbus Variable USINT Extended 2 (A5 $_{hex}$) – Common	200
	. 288
Table 287: Input fieldbus variable UINT (A6 $_{hex}$) – Class	. 289
Table 288: Input fieldbus variable UINT (A6 $_{hex}$) – Instance 1255	. 289

Table 289: Input fieldbus variable UINT (A6 hex) – Common service	. 289
Table 290: Input Fieldbus Variable UINT Extended 1 (A7 hex) – Class	. 290
Table 291: Input Fieldbus Variable UINT Extended 1 (A7 $_{hex}$) – Instance 256.	. 290
Table 292: Input Fieldbus Variable UINT Extended 1 (A7 hex) – Common serv	vice
	. 290
Table 293: Output fieldbus variable UINT (A8 $_{hex}$) – Class	. 291
Table 294: Output fieldbus variable UINT (A8 $_{hex}$) – Instance 1255	. 291
Table 295: Output fieldbus variable UINT (A8 $_{hex}$) – Common service	. 291
Table 296: Output Fieldbus Variable UINT Extended 1 (A9 $_{hex}$) – Class	. 292
Table 297: Output Fieldbus Variable UINT Extended 1 (A9 $_{hex}$) – Instance 250	5292
Table 298: Output Fieldbus Variable UINT Extended 1 (A9 $_{hex}$) – Common	202
Service	. 292
Table 299. Input fieldbug variable UDINT (AA $_{hex}$) – Class	. 293
Table 300: Input fieldbug variable UDINT (AA_{hex}) – Instance 1128	. 293
Table 301: Input fieldbus Variable UDINT (AA_{hex}) – Common service	. 293
Table 302: Input Fieldbus Variable UDINT Offset (AB $_{hex}$) – Class	294
Table 303. Input Fieldbus Variable UDINT Offset (AB $_{hex}$) – Instance 1125. Table 204: Input Fieldbus Variable UDINT Offset (AB $_{hex}$) – Common service	. 294
Table 304. Input Fieldbus variable UDINT Offset (AB hex) – Common service Table 205: Input fieldbus variable UDINT (AA \rightarrow) – Class	205
Table 305: Input fieldbus variable UDINT (AA_{hex}) – Class	295
Table 300: Input fieldbus variable UDINT (AA_{hex}) – Instance 1128	295
Table 308: Output Fieldbus Variable UDINT Offset (AD, β) – Class	. 295
Table 309: Output Fieldbus Variable UDINT Offset (AD_{hex}) – Instance 1 12	8 8
Table 507. Output Fieldous Variable ODHVT Offset (AD_{hex}) – instance 112	296
Table 310. Output Fieldbus Variable UDINT Offset (AD hav) – Common servi	ce
	. 296
Table 311: 1 Channel Digital Input Module with Diagnostics	. 299
Table 312: 2 Channel Digital Input Modules	. 299
Table 313: 2 Channel Digital Input Module with Diagnostics	. 299
Table 314: 2 Channel Digital Input Module with Diagnostics and Output Proc	ess
Data	. 300
Table 315: 4 Channel Digital Input Modules	. 300
Table 316: 8 Channel Digital Input Modules	. 300
Table 317: 16 Channel Digital Input Modules	. 301
Table 318: 1 Channel Digital Output Module with Input Process Data	. 302
Table 319: 2 Channel Digital Output Modules	. 302
Table 320: 2 Channel Digital Input Modules with Diagnostics and Input Proce	SS
Data	. 303
Table 321: 2 Channel Digital Input Modules with Diagnostics and Input Proce	SS
Data //5x-506	. 303
Table 322: 4 Channel Digital Output Modules	. 304
Table 323: 4 Channel Digital Output Modules with Diagnostics and Input Prod	cess
Data $1 + 224 + 9 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$. 304
Table 324: 8 Channel Digital Output Module	. 304
Table 525: 8 Channel Digital Output Modules with Diagnostics and Input Pro	cess
Data Table 226: 16 Channel Digital Output Medules	205
Table 320. 10 Channel Digital Input/Output Modules	202
Table 328: 1 Channel Analog Input Modules	300
Table 320. 7 Channel Analog Input Modules	307
rable 527. 2 Channel Analog input Wouldes	. 507

Table 330: 4 Channel Analog Input Modules	308
Table 331: 2 Channel Analog Output Modules	. 309
Table 332: 4 Channel Analog Output Modules.	309
Table 333: Counter Modules 750-404, (and all variations except of /000-005).	
753-404. (and variation /000-003)	.310
Table 334: Counter Modules 750-404/000-005	.311
Table 335 [•] Counter Modules 750-638 753-638	311
Table 336: Pulse Width Modules 750-511. /xxx-xxx	.312
Table 337. Serial Interface Modules with alternative Data Format	312
Table 338: Serial Interface Modules with Standard Data Format	.313
Table 339: Data Exchange Module	.313
Table 340: SSI Transmitter Interface Modules	.314
Table 341: Incremental Encoder Interface Modules 750-631/000-004,010.	-011
	.314
Table 342: Incremental Encoder Interface Modules 750-634	315
Table 343 [•] Incremental Encoder Interface Modules 750-637	315
Table 344: Digital Pulse Interface Modules 750-635	.316
Table 345 [•] DC-Drive Controller 750-636	316
Table 346. Stepper Controller RS 422 / 24 V / 20 mA 750-670	317
Table 347. RTC Module 750-640	318
Table 348: DALI/DSI Master module 750-641	318
Table 349 [•] EnOcean Radio Receiver 750-642	319
Table 350: MP Bus Master Module 750-643	319
Table 351. Bluetooth [®] RF-Transceiver 750-644	320
Table 352: Vibration Velocity/Bearing Condition Monitoring VIB I/O 750-64	15
	. 321
Table 353: KNX/EIB/TP1 Module 753-646	. 322
Table 354: AS-interface Master module 750-655	. 323
Table 355: System Modules with Diagnostics 750-610, -611	. 324
Table 356: Binary Space Module 750-622 (with behavior like 2 channel digita	al
input)	. 324
Table 357: 1 Channel Digital Input Module with Diagnostics	. 326
Table 358: 2 Channel Digital Input Modules	. 326
Table 359: 2 Channel Digital Input Module with Diagnostics	. 327
Table 360: 2 Channel Digital Input Module with Diagnostics and Output Proc	ess
Data	. 327
Table 361: 4 Channel Digital Input Modules	. 328
Table 362: 8 Channel Digital Input Modules	. 328
Table 363: 16 Channel Digital Input Modules	. 328
Table 364: 1 Channel Digital Output Module with Input Process Data	. 329
Table 365: 2 Channel Digital Output Modules	. 330
Table 366: 2 Channel Digital Input Modules with Diagnostics and Input Proce	ess
Data	. 330
Table 367: 2 Channel Digital Input Modules with Diagnostics and Input Proce	ess
Data 75x-506	. 331
Table 368: 4 Channel Digital Output Modules	. 331
Table 369: 4 Channel Digital Output Modules with Diagnostics and Input Pro	cess
Data	. 331
Table 370: 8 Channel Digital Output Module	. 332

Table 371: 8 Channel Digital Output Modules with Diagnostics and Input Pro-	ocess
Data	332
Table 372: 16 Channel Digital Output Modules	333
Table 373: 8 Channel Digital Input/Output Modules	333
Table 374: 1 Channel Analog Input Modules	334
Table 375: 2 Channel Analog Input Modules	335
Table 376: 4 Channel Analog Input Modules	335
Table 377: 2 Channel Analog Output Modules	336
Table 378. 4 Channel Analog Output Modules	336
Table 379: Counter Modules 750-404 (and all variations except of /000-005))
753-404 (and variation /000-003)	" 337
Table 380: Counter Modules 750-404/000-005	338
Table 381: Counter Modules 750-638 753-638	339
Table 382: Pulse Width Modules 750-511 /xxx-xxx	339
Table 383: Serial Interface Modules with alternative Data Format	340
Table 384: Serial Interface Modules with Standard Data Format	3/0
Table 385: Data Exchange Module	340
Table 286: SSI Transmittar Interface Modules	2/1
Table 380. SSI Transmitter Interface Modules with an Alternative Date	341
Table 567. SSI Transmitter interface 1/O Modules with an Alternative Data	242
Foliliat	342
Table 388: Incremental Encoder Interface Modules /50-631/000-004, -010,	-011
T_{-1}	342
Table 389: Incremental Encoder Interface Modules 750-634	343
Table 390: Incremental Encoder Interface Modules /50-63/	343
Table 391: Incremental Encoder Interface Modules /50-635, /50-635	344
Table 392: DC-Drive Controller /50-636 Table 392: C-Drive Controller /50-636	344
Table 393: Steppercontroller RS 422 / 24 V / 20 mA /50-6/0	345
Table 394: KTC Module /50-640	346
Table 395: DALI/DSI Master module /50-641	34 /
Table 396: EnOcean Radio Receiver /50-642	34 /
Table 397: MP Bus Master Module 750-643	348
Table 398: Bluetooth® RF-Transceiver 750-644	349
Table 399: Vibration Velocity/Bearing Condition Monitoring VIB I/O 750-6	45
	349
Table 400: AS-interface Master module 750-655	350
Table 401: System Modules with Diagnostics 750-610, -611	351
Table 402: Binary Space Module 750-622 (with behavior like 2 channel digit	tal
input)	351
Table 403: MODBUS table and function codes	354
Table 404: Description of marking example for ATEX and IEC Ex approved	I/O
modules according to CENELEC and IEC	356
Table 405: Description of marking example for Ex i and IEC Ex i approved I	:/O
modules according to CENELEC and IEC	358
Table 406: Description of marking example for I/O modules according to NE	EC
500	359
Table 407: VDE Installation Regulations in Germany	360
Table 408: Installation Regulations in USA and Canada	360
Table 409: MIB II – System group	368
Table 410: MIB II – Interface Group	369
Table 411: MIB II – IP Group	371

Table 412: MIB II – IpRoute Table Group	. 372
Table 413: MIB II – ICMP Group	. 373
Table 414: MIB II – TCP Group	. 374
Table 415: MIB II – UDP Group	. 375
Table 416: MIB II – SNMP Group	. 376
Table 417: WAGO MIB – Company Group	. 377
Table 418: WAGO MIB – Product Group	. 377
Table 419: WAGO MIB – Versions Group	. 378
Table 420: WAGO MIB – Real Time Clock Group	. 379
Table 421: WAGO MIB – Ethernet Group	. 380
Table 422: WAGO MIB – Actual Error Group	. 380
Table 423: WAGO MIB – PLC Project Group	. 381
Table 424: WAGO MIB – Http Group	. 382
Table 425: WAGO MIB – Ftp Group	. 382
Table 426: WAGO MIB – Sntp Group	. 383
Table 427: WAGO MIB – Snmp Group	. 383
Table 428: WAGO MIB – Snmp Trap String Group	. 385
Table 429: WAGO MIB – Snmp User Trap String Group	. 386
Table 430: WAGO MIB – Plc Connection Group	. 386
Table 431: WAGO MIB – Modbus Group	. 387
Table 432: WAGO MIB – Ethernet IP Group	. 388
Table 433: WAGO MIB – Process Image Group	. 388
Table 434: WAGO MIB – Plc Data Group	. 389

 WAGO Kontakttechnik GmbH & Co. KG

 Postfach 2880
 • D-32385 Minden

 Hansastraße 27
 • D-32423 Minden

 Phone:
 +49/5 71/8 87 - 0

 Fax:
 +49/5 71/8 87 - 1 69

 E-Mail:
 info@wago.com

Internet:

http://www.wago.com

